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SUMMARY

The mid-infrared technique (MIR) can be used to identify 
and estimate soil properties with high accuracy. The aim 
of this study was to evaluate the potential of mid-infrared 
reflectance spectroscopy (MIR) for the estimation of chemical 
properties of soils as well as the application of this technique 
in obtaining digital maps. In this study, 249 soil samples from 
two orders, Andisols and Oxisols, were analyzed. The results 
obtained in the analysis of the curves verified that the greater 
number of attributes was reflected in the spectral region of 
400 and 850cm-1. The Andisols stood out due to the results 
in the calibration of the models, which were better than those 
of the Oxisols. The spectral responses were similar in both 
soils, but with different levels of reflectivity. This difference 
was more notable in the Andisols, where the spectral peaks 
were lower, a fact attributable to the compounds of the 
organic matter that tended to obscure the soil, absorbing 
infrared light. The results demonstrated that the mid-infrared 
reflectance spectroscopy MIR allowed for the processing of a 
large number of samples, where information about various 
parameters was obtained in a single spectrum. The organic 
carbon was the attribute with the best prediction. Similarly, 
the semivariogram models and contour maps obtained 
from the spectral data models showed high similarity to 
those obtained from the laboratory measurements for those 
properties, where the spectral models were representative.

Key words: Diffuse reflectance, pedometrics, soil analysis, 
predictive models, spatial variability.

RESUMEN

La técnica de infrarrojo medio (MIR) puede ser utilizada para 
identificar y para estimar las propiedades de suelos, con gran 
precisión. El objetivo del presente estudio fue evaluar el po-
tencial de la espectroscopia de reflectancia en el infrarrojo 
medio (MIR), para la estimación de algunas propiedades 
químicas del suelo, así como la aplicación de esta técnica, 
en la obtención de mapas digitales. Fueron analizadas 249 
muestras de suelos de dos órdenes, correspondiente a An-
disoles y Oxisoles. Los resultados obtenidos en el análisis de 
las curvas permiten verificar que el mayor número de atribu-
tos están reflejados en la región espectral de 400 y 850cm-

1. El Andisol, se destacó por obtener mejores resultados en 
la calibración de los modelos que el Oxisol. Las respuestas 
espectrales en ambos suelos fueron similares, pero con di-
ferentes niveles de reflectancia. Esta diferencia fue más mar-
cada en los Andisoles, donde los picos espectrales fueron 
más bajos, hecho atribuible a los compuestos de la materia 
orgánica que tienden a oscurecer el suelo absorbiendo la 
luz infrarroja. Los resultados demuestran que la espectrosco-
pia de reflectancia infrarroja MIR permite procesar una gran 
cantidad de muestras, donde se obtiene información sobre 
varios parámetros en un solo espectro. El carbono orgánico 
fue el atributo con la mejor predicción. De igual manera, los 
modelos de semivariograma, como los mapas de contorno, 
obtenidos a partir de los modelos con datos espectrales, 
mostraron alta similitud con los obtenidos a partir de las me-
diciones hechas en laboratorio, para aquellas propiedades, 
donde los modelos espectrales fueron representativos.

Palabras clave: Reflectancia difusa, pedometría, análisis de 
suelos, modelos predictivos, variabilidad espacial.
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INTRODUCTION

Throughout history, people have used different methods 
for the quantification of the elements present in soils with 
laboratory chemical analysis in order to characterize or 
identify the types of soils and agricultural potential. For 
the most part, the analysis to determine the chemical 
properties of a soil is wasteful and slow and requires a 
high investment, especially when intensive and systematic 
surveys are conducted to determine the spatial variability 
and define the management zones (Plant, 2001). Moreover, 
the reagents used in these analyzes generate waste that 
may contain reagents or microorganisms that pose a risk to 
the environment, health and natural resources, due to their 
corrosive, reactive, explosive, toxic, biological-infectious, and 
flammable characteristics (Viscarra-Rossel et al. 2006).

There is global consensus to develop cleaner, cheaper and 
faster methodologies to perform soil analyzes that help, for 
example, environmental monitoring, as proposed by Okin 
& Painter (2004) and Shepherd & Walsh (2007) or the 
modeling of biological processes or agricultural production or 
production systems known as precision farming or localized 
handling (Viscarra-Rossel et al. 2006; Tittonell et al. 2008). 
Among these techniques, there is the perception of soil, 
which can be done through spectral signatures, obtained by 
physical processes where a body absorbs energy and reflects 
part of it. In the case of soils, this absorption depends on the 
compounds that form them, which reflect energy at different 
wavelengths.

It is possible to find relationships between the content of 
certain nutrients in a soil and their spectral responses, which 
can be identified through models. The functions that result 
from modeling phenomena for estimating soil properties 
from auxiliary variables are called pedotransfer functions 
(PTF), proposed by Bouma & Van Lanen (1987), whose 
objective is the use of data that needs to be processed or 
transformed into the required data (Bouma, 1989). These 
PTFs provide information that is usually difficult to obtain, 
either because of high costs or difficulty in sampling. Also, 
secondary data can be used, commonly available in soil 
survey reports or geographic information or otherwise easily 
obtained (Minasny et al. 2003). Therefore, one purpose 
of PTF’s is decreasing costs and increasing the speed of 
information collection.

The potential use of diffuse reflectance spectroscopy in 
agriculture and specifically in the study of soil characteristics 
and their spatial distribution has been demonstrated by 
obtaining spectra in the VIS, NIR, MIR (Bilgili et al. 2010; 
Camacho-Tamayo et al. 2014; Vohland et al. 2014). The 
novelty of this technology is that a single spectrum can 
simultaneously characterize various soil properties. Similarly, 

for decision-making, it is helpful to present information in 
a way that the soil variability and especially their properties 
can be properly identified, represented by digital maps. 
Digital soil mapping (DSM) is defined as the creation and 
manipulation of spatial information systems applied to 
soil studies through numerical models for determining the 
spatial and temporal variations, as well as their properties, 
based on the observation and knowledge of them and the 
environmental variables (Behrens et al. 2014).

DSM is characterized by the adoption of new tools and 
techniques for analyzing, integrating and visualizing soil 
and environmental data, obtained by remote or close-up 
observation, or for the use of geostatistical techniques. 
These tools are essential to streamlining and perfecting soil 
mapping (Grunwald, 2009). 

This study aimed to evaluate the potential of mid-infrared 
reflectance spectroscopy (MIR) for the estimation of soil 
chemical properties through the calibration of partial least 
square regression models, as well as the application of this 
technique for obtaining digital maps.

MATERIALS AND METHODS

Characterization of the study area. For this study, 90 
samples were taken from an Andisol in the municipality of 
Silvania (Cundinamarca, Colombia) and 160 samples were 
taken from an Oxisol in the municipality of Puerto López 
(Meta, Colombia). The samples were air dried and passed 
through a 2mm sieve to obtain the spectral responses and 
the pH was determined with a potentiometer and a 1:1 soil/
water ratio; the exchangeable aluminum (Al.I) was revealed 
with titration; along with phosphorus by the Bray II method; 
Ca, Mg, K and Na by extraction with ammonium acetate 
and a 7.0 pH and organic carbon by the method modified 
of Walkley Black. The spectral responses were obtained with 
a Prestige 21 sensor (Shimadzu Corporation) that covered a 
range between 4000 and 400cm-1 of the MIR region.

Processing the spectral responses. Initially, a characteriza-
tion of the spectral responses of the two types of soils was 
carried out to identify the similarities and differences. In ad-
dition, the correlation of the properties was analyzed at dif-
ferent wavelengths of the spectral response, along with the 
amplitude correlation, from the sum of the maximum and 
minimum absolute values of the observed linear correlation.

Calibration of the models. The spectral model calibration 
was performed using partial least squares regression (PLSR) 
(Wold et al. 2001), widely used in chemometrics procedures 
that provide a better approach of quantitative models 
between predictor variables (X) and responses ( Y), featuring 
higher performance than multiple linear regression (MLR). 
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In the calibration, the coefficient of determination (R2), the 
root mean square error of prediction (RMSE) and the residual 
deviation from the prediction (RPD) were evaluated. These 
calibration parameters served as the basis for indicating 
the models that performed better and were obtained with 
ParLeS, developed by Viscarra-Rosel (2008). From these 
results, descriptive statistics were performed for all of the data 
of the analyzed attributes using SPSS version 18.0. In this 
analysis, the mean, median, minimum and maximum values 
of skewness, kurtosis and coefficient of variation (CV) were 
determined for each attribute, measured in the laboratory 
and obtained from the spectral models.

Geostatistical analysis. The spatial variability of the analyzed 
attributes was determined with geostatistical methods 
using universal kriging and semivariogram analysis (Bailey 
& Gatrell, 1998). Based on the fitness of the models, the 
nugget (C0), the sill (C0 + C), the range (R) and the degree 
of spatial dependence (DSD) determined as the ratio of the 
nugget and the sill (C / C0 + C), considered strong for DSD 
when above 0.75, moderate between 0.25 and 0.75, and 
weak below 0.25 (Cambardella et al. 1994). The theoretical 

semivariogram models were estimated using GS+ v.7. 
For the selection of the semivariogram, different functions 
were evaluated to choose the best data fit: the spherical, 
exponential or Gaussian models. The prediction of the 
kriging attributes resulted in contour maps using Surfer v.10 
(Golden Software, CO, USA), based on the observed values 
and those obtained from the spectral models.

RESULTS AND DISCUSSION

Analysis of the spectral curves. The spectral responses of 
the Oxisols and Andisols differed mainly in the region of 400 
to 2200cm-1 (Figure 1), where the Oxisols showed higher 
reflectance due to their lower content of organic matter 
(OM). In general, OM absorbs energy and promotes a lower 
intensity of reflectance across the spectrum (McDowell et 
al. 2012). This difference is due to weathering processes 
in which Oxisols are strongly influenced by climatic factors 
such as high temperatures and heavy rainfall, while Andisols 
receive greater influence from the relief, with higher contents 
of OM and the presence of volcanic ash.

 

 
 

 
 
 Figure 1. Spectral soil curves from (a) Cundinamarca and (b) Meta.
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By looking at the spectra for the soil type and identifying 
where the attributes increased expression, it was verified that 
the Oxisol presented its maximum reflectance in the spectral 
region of 466 to 680cm-1, with values up to 69%. According 
to McDowell et al. (2012), the region of the spectral signature 
of soils located between 600 and 1500cm-1 is where the 
majority of characteristics of the fundamental vibrations of 
silicate minerals in the soil are found. In Oxisols, McDowell et 
al. (2012) found that the spectral characteristics caused by 
iron oxides have great particularity because they produce an 
increase in reflectance at short wavelengths and a decrease 
in reflectance at slightly longer wavelengths, as can also be 
verified in Andisols.

High percentages of reflectance are also an effect of reflection 
of infrared light in the spectral range of light or dark colors. 
In the analyzed soils, the light emission could be an indicator 
of the low content of humic acids, responsible for providing 
dark colored solid that are high in OM. For the Andisol, the 
curve in the spectral region was smoother than that of the 
Oxisol, partly due to the higher content of OM. Dark colors in 
soils absorb light emitted from the spectrum, which reduces 
the reflectance percentage, resulting in a narrower curve. The 
region between 900 and 2000cm-1, according to McDowell et 
al. (2012), may be ambiguous due to overlapping attributes, 
such as organic compounds, carboxyl, amide and CH 
groups, as well as common minerals of quartz and kaolinite 
silicates.

Correlation between the attributes and the spectral 
response. In the analysis of the correlations, the Al in the 
Andisol presented a positive correlation in most of the spectral 
region, with increased expression with a correlation of 0.68 
in the spectral region of 3502cm-1. For the Oxisol, lower 
correlation values (Figure 2) were observed. Correlations with 
amplitude values close to one (1) indicate that the spectral 
response can be used as an alternative to estimate the 
contents of an element, as seen for Al in the Andisol, whose 
amplitude was 0.78.

In the analysis of the correlations for exchangeable bases Ca, 
K, Mg and Na, a similar behavior was found in both soils, 
where the spectral response obtained in the Andisol had 
a broader amplitude than the Oxisol. For these attributes, 
the Andisol presented a negative correlation in most of the 
spectrum and a positive one in some points. The highest 
peak in the spectral region was at 1850cm-1, with values 
from 0.26 for K to 0.48 for Ca, an attribute that presented 
a range of 0.80, a figure that suggests that the spectral 
model presented a better performance in estimating this 
property. In turn, the Na had a lower amplitude, with a value 
of 0.52, influenced by factors that are not readily detected 
in the spectral response obtained in the MIR, a behavior due 

to low levels of exchangeable Na and their variability in the 
landscape and Na levels in the external soil solution, among 
others (Dunn et al. 2002).

The contents of Mg and K presented an intermediate behavior 
with amplitudes of 0.68 and 0.60. According to Garzón et al. 
(2010), for these soils, the contents of K are most affected by 
the anthropic management, which can cause a loss of this 
attribute, reflecting a lower amplitude.

The Ca, K, Mg and Na in the Oxisol presented a low amplitude. 
Often, the spectral response in these soils presented a 
smooth and low expression. The lower amplitude curve 
observed for these attributes may decrease the accuracy 
in the estimating model, which has been attributed to low 
fertility and, therefore, low attributes. This reaction was 
expected because, in the sand and clay fraction of Oxisols, 
the predominant minerals are quartz and kaolinite, low 
indicators of potential soil fertility (Peña et al. 2009).

The OC had a correlation with a negative pattern less than 
-0.8 in the region of 1658cm-1 for the Andisol. There was a 
positive correlation for the Oxisol and part of the curve for the 
Andisol, close to 0.6 in the regions of 1168 and 3693cm-1, 
respectively. Considering the soil orders, the Andisol had a 
higher amplitude than the Oxisol, with values of 1.30 and 
0.55, respectively. According to Bellon-Maurel & McBratney 
(2011), carbonates are easy to find with MIR due to strong 
absorption bands. The higher contents of OC in the Andisol 
favored obtaining a better estimation model for this attribute.

In the Oxisol, the OM contents were low and the spectrum 
curve was flatter, indicating a lower expression of this 
attribute, despite having a direct correlation. The Oxisols 
could have this characteristic of identification due to the low 
OM contents in the correlation curve in the spectral region 
(Daza et al. 2006).

The P demonstrated a contrary correlation, where the Oxisol 
presented negative correlations. On the other hand, the 
Andisol had a positive correlation throughout the curve, 
higher than 0.5 with a positive correlation of 0.86 in the 
spectral region of 2054cm-1.

In the analysis of the curve amplitude, the P in the Andisol 
had the greater amplitude, 0.52, while for the Oxisol it was 
0.07. It is worth mentioning that the analyzed soils presented 
agricultural intervention and that the broadest amplitude 
was associated with the higher contents of this attribute. 
Therefore, the wide amplitude observed in the correlation of 
P was mainly due to the phosphoric fertilization of crops and 
the presence of P in volcanic ash, which is released in the soil 
solution, allowing corrections in the pH (Muñoz et al. 2006).
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Figure 2. Spectral correlation with the soil attributes from Cundinamarca (Andisol) y Meta (Oxisol).

The pH in the Andisol had a -0.3 inverse correlation up to 
the region of 1747cm-1, where it started to show a positive 
correlation. For the Oxisol, this property had a higher positive 
correlation of 0.5. By analyzing the amplitude of this attribute 
for these soils, the Oxisol presented a range of 0.55, being 
greater than the amplitude of the Andisol, whose value was 
0.48. In general, one can say that these curves allowed for 
a similar estimation for this attribute from spectral models.

Calibration of the models. The models obtained for the 
Andisol were generally acceptable, where the outstanding 
attributes were OC (R2 = 0.82, RPD> 2.3) and P (R2 = 0.69, 
RPD> 1.8) (Table 1). In general, the soil OC always presented 
good models for estimating this attribute from the spectral 
responses (Camacho-Tamayo et al. 2014; McDowell et al. 
2012). For the Oxisol, the models showed lower quality for 
different attributes, where the contents of OC and Al had a 
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good response, with values of R2 = 0.74 and RPD> 1.95; R2 
= 0.65; RPD> 1.61, respectively. The other attributes did not 
indicate a good estimation from the models. These results 
are consistent with the correlations because the Oxisol was 
less reliable in the calibration models, coinciding with the 
report by Reeves et al. (2006).

Descriptive statistics. Once the models were calibrated and 
validated, the localization and dispersion measurements of 
the data recorded in the laboratory and those estimated with 
the models (Table 2) were verified, where a similarity between 
the measurements and estimations was observed for the 
different attributes with similar mean, median, coefficient of 

Table 1. Results of the calibration models for soil attributes prediction from Cundinamarca y Meta. 

ATRIBUTTE DEPARTAMENT R2 RMSE RPD

Al
Cundinamarca 0.75 1.43 1.98

Meta 0.65 0.16 1.61

Ca
Cundinamarca 0.86 1.56 2.67

Meta 0.01 2.03 1.00

CO
Cundinamarca 0.82 0.59 2.30

Meta 0.74 0.10 1.95

K
Cundinamarca 0.21 0.54 1.03

Meta 0. 30 0.16 1.14

Mg
Cundinamarca 0.73 0.43 1.90

Meta 0.35 0.02 1.16

Na
Cundinamarca 0.07 0.07 1.03

Meta 0.20 0.01 1.06

P
Cundinamarca 0.69 8.17 1.80

Meta 0.03 1.08 0.99

pH
Cundinamarca 0.76 0.14 2.02

Meta 0.44 0.10 1.32

variation (CV), skewness and kurtosis values. This similarity 
was higher for the OC, Al and pH for the Andisol and Oxisol 
due to the better model, as compared to the results obtained 
for the other attributes, whose spectral models were slightly 
representative, with the exception of Ca, Mg and P for the 
Andisol. On the other hand, the attributes that resulted 
in good models also presented a similar behavior in the 
statistical description, estimated with the models. 

In performing the analysis through the MIR spectroscopy, the 
soil properties demonstrated different levels of reflectivity in 
similar spectral regions. This difference was more notable 
in the Andisol, where the spectral peaks were lower, a fact 
attributable to the compounds of the OM, which tended to 
obscure the soil, absorbing the infrared light.

Geostatistical analysis. For the Andisol, the Al, Ca, CO, 
estimated K, Mg, estimated Na, measured P and pH were fit 
to the exponential model. The measured K and measured Na 
were fit to a Gaussian model and finally the estimated P was 
fit to the spherical model. In all of the attributes, the ranges 

were different (Table 3). These results are similar to those 
reported by Esfandiarpoor et al. (2010).

The spatial dependence in all of the analyzed attributes was 
moderate to strong. The Al, Ca, CO, K, Mg, Na, P and pH 
presented a moderate spatial dependence and the estimated 
Mg and Na had a strong spatial dependence, a similar 
behavior in studies by Jaramillo (2009) for soils with andic 
properties in Colombia. The moderate spatial dependence in 
most of the attributes may indicate that these soils still retain 
their edaphic-genetic variability, which comes from factors 
such as slope, relief and rainfall, among others, although 
these soils are used for agricultural activities. The R2 for most 
of the attributes was greater than 0.70, which may indicate 
good accuracy of attributes with kriging (Table 3).

For the Oxisol, the exponential and Gaussian models 
presented a better fit. For the Al, OC, estimated Mg, estimated 
Na, P and measured pH, an exponential model was used and, 
for the Ca, K, measured Mg, and measured Na, spherical and 
Gaussian models were used (Table 3). 
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For the K, measured Na, measured P, and estimated pH, there 
was moderate dependence and, for the rest of the analyzed 
attributes in the soils from Meta, there was a strong spatial 
dependence, as reported for the region by Camacho-Tamayo 
et al. (2008) and Peña et al. (2009). The R2 of the attributes, 
as also reported by Martins et al. (2011), was above 0.80, 
except for the Ca, measured Mg, and measured P, which 
had R2 values of 0.69, 0.72, 0.75 and 0.68, respectively. For 
the attributes with moderate spatial dependence, it could 
be concluded that the kriging estimation would have less 
precision, as established by Parfitt et al. (2009).

Contour maps. In figure 3, the Al is distributed with the higher 
values in the left part of the study area, which corresponds to 
the higher land, but represents a low percentage of the study 
area. In general, the majority of the studied land presented 
values lower than 0.35cmolc kg-1, located on the right and 

central areas of the studied land on both the maps for the 
estimated and the measured values. 

For the Ca, the spatial distribution was given by the higher 
percentage of the contents of 5.0cmolc kg-1, located in the 
upper-left area of the land, and in the higher contents of 
around 9.5cmolc kg-1, located in the lower-left side of the 
land, and that decreased toward the right in both maps for 
the estimated and measured values. The OC in the Andisol 
had a spatial distribution dominated by the high contents 
because the values above 6% occupied the higher percentage 
of the land, mainly in the map of the estimated values. This 
behavior was expected for this attribute because, in the 
models obtained for the OC, it presented good estimated. The 
K had a spatial distribution that was similar to that of the OC, 
where the contents over 0.82cmolc kg-1 occupied the higher 
percentage and were located in the lower-left part of the land. 

    

   
 

    

    
 

Figure 3. Spatial distribution for soil attributes of the Andisol, obtained by kriging for Al, Ca, CO, K, Mg, Na, P y pH, 
measurement (Med.) and estimated (Est.).
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Attributes such as the Mg and Na did not have good 
estimation models; for this reason, there is a difference 
between the maps obtained with the measured vales and 
the maps obtained with the estimated values, resulting from 
diffusion, spatial distribution. In the analysis of the contour 
maps for P, there were medium to low contents, with values 
below 14mg kg-1 and distribution in the center of the map. 

The prevailing pH values were 5.5, located at the bottom of 
the map. When the analysis was carried out, these contents 
did not vary too much, in a range where the solubility of some 
attributes was favored, but affecting the others. According 
to Camacho-Tamayo et al. (2008), areas with lower pHs 
have lower concentrations of Ca and Mg and, therefore, a 
predominance of low levels of certain bases in the soil.

In the contour maps of the Oxisol, there were different spatial 
trends for some attributes, where the spectral models did not show 

good results, contributing to the quality and representativeness 
of the spatial distribution maps obtained from these models 
(Figure 4). The Al had a slightly homogeneous distribution. The 
higher contents were between 1.4 and 1.7cmolc kg-1, located on 
the left side of the field. The lower content was between 1 and 
1.3cmolc kg-1, located on the right side and bottom of the land, 
and the intermediate contents were in the central area.

In the analysis of the kriging data interpolation for the pH, 
the maps had the better fit. The distribution of this attribute 
was more homogeneous than Al, probably due to the low 
variability in the content of the soils. On the maps obtained 
from the measured data as well as the estimated data from 
the spectral models, the higher pH values were at the bottom 
of the field, with values between 4.70 and 4.93, with lower 
ranges at the top, near 4.40. Accordingly, it can be concluded 
that the upper part of the land had serious acidity problems 
caused by excesses of Al.

 
   

 
 

 
 

   

 

    
 

Figure 4. Spatial distribution for soil attributes of the Oxisol, obtained by kriging for Al, Ca, CO, K, Mg, Na, P y pH, measurement 
(Med.) and estimated (Est.).
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Attributes such as exchangeable bases, Na and P did not show 
good results. This was expected since these attributes presented 
low contents in the soil and the resulting spectral models were 
unrepresentative, thereby generating inadequate estimations. 
This effect was particularly noticeable in the Oxisols, soils with a 
low cation exchange capacity (Camacho-Tamayo et al. 2008).

In analyzing the behavior of the maps, the existence of 
spatial variability of the soil attributes was confirmed, which 
provided the ability to identify areas that need amendments 
(Orjuela-Matta et al. 2012), resulting in a way to improve soil 
use, reducing production costs and environmental pollution 
(Martins et al. 2011).

Similarly, the results of this study demonstrate that, through 
the mid-infrared reflectance spectroscopy MIR technique, 
large amounts of samples can be processed, which can 
provide information for several parameters in one spectrum. 
In addition, the integration of the laboratory techniques and 
mathematical modeling based on MIR spectral responses can 
be successfully performed for the analysis of soil attributes. 
With the geostatistical analysis, it was concluded that most 
of the attributes fit to the exponential and spherical models. 
The analysis of the semivariograms showed that these 
attributes presented spatial dependence in both the Andisols 
and the Oxisols, where those attributes that presented a 
representative spectrum model provided adequate digital 
maps based on the values estimated by the models.
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