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ABSTRACT

The high Andean areas present ecophysiological conditions suitable
for the cultivation of many fruit species, especially of the Solanaceae
family. The objective of this review is to present important
ecophysiological information on four fruit trees grown in cold
climates: Cape gooseberry, tree tomato, lulo, and sweet cucumber
o pear melon. The cape gooseberry is a species well adapted to
cold tropical climate, it is grown between 1,800 and 2,700m a.s.l.,
with temperatures of 13 to 16°C. It is highly adapted to high solar
radiation and to the abrupt changes between the day and night
temperatures. It requires a precipitation of 1,000 to 1,800mm year'1
uniformly distributed throughout the year, and is sensitive to water
deficit but also to waterlogging and strong winds. The tree tomato,
in Colombia, produces better from 1,800 to 2,600m a.s.l., with
temperatures between 13 and 20°C, annual rainfall between 1,500
and 2,000mm, relative humidity around 80%, and solar brightness
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of 1,800 to 2,300 hours/year; it does not tesist strong winds, watet
deficit or waterlogging. The lulo requires environments with high
precipitation (1,000 to 2,800mm) and penumbra because it loses a
lot of water through transpiration but waterlogging also affects it;
it grows well in areas between 1,600 to 2,400m a.s.. and 16 to 24°C,
with photosynthesis rates up to of 34.03umol CO: m”s". The sweet
cucumber is of growing interest in many exotic fruit markets, it
grows at 900-2,800m a.s.l. with temperatures <25°C and responds
well to air entichment with COx.

Keywords: Physalis pernviana, Solanum betacennr, Solanum quitoense;
Solanum muricatuns; Physiology.

RESUMEN

Las zonas altoandinas presentan condiciones ecofisiolégicas aptas
para el cultivo de muchas especies frutales, especialmente, de la
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familia Solanaceae. El objetivo de este articulo de revisién de
literatura fue reunir la informacién ecofisiolégica importante sobre
cuatro frutales, cultivados en clima frio: uchuva, tomate de arbol,
lulo y pepino dulce. La uchuva es una especie bien adaptada a clima
frio, se cultiva entre los 1.800 y 2.700m s.n.m., con temperaturas
de 13 a 16°C. Es altamente adaptada a una elevada radiacion solar
y al cambio brusco entre la temperatura del dia y de la noche.
Requiere una precipitacion de 1.000 a 1.800mm aﬁofl, distribuido
uniformemente durante el afio; es sensible al déficit hidrico, pero
también al encharcamiento y a los fuertes vientos. El tomate de
arbol, en Colombia, produce mejor de 1.800 a 2.600m s.n.m., con
temperaturas entre 13 y 20°C, con una precipitacion anual entre
1.500 y 2.000mm y humedad relativa alrededor del 80%, con un
brillo solar de 1.800 a 2.300 horas/afio; no resiste vientos fuertes,
déficit hidrico, ni anegamiento. Fl lulo requiere ambientes con alta
precipitacion (1.000 a 2.800mm) y penumbra, porque pierde mucha
agua por transpiracion, pero el anegamiento también lo afecta; crece
bien en zonas entre 1.600 a 2.400m s.n.m. y 16 a 24°C, con tasas de
fotosintesis hasta de 34,03umol CO> m” s, El pepino dulce esta
generando un creciente interés en muchos mercados de los frutos
exoticos, crece en 900-2.800m s.n.m., con temperaturas <25°C y
responde bien al enriquecimiento con COx.

Palabras clave: Physalis  pernviana; ~ Solanum — betaceuns; ~ Solanum
quitoense; Solanum muricatunz, Fisiologia.

INTRODUCTION

The Andes are a range of mountains with a length of 8,500km that
extends from Chile, northern Argentina, Bolivia, Peru, Ecuador, and
Colombia to Venezuela, with an average altitude between 3,000 and
4,000m a.s.l., bordering the coast of the Pacific Ocean (Guerrero
et al. 2011), with a width that varies between 250 and 750km and
occupying an area of about 2,870,000km” (Orme, 2007). Having
15% of the total richness of the world’s plants, the tropical Andes
represent one of the main key points of the planet biodiversity
(Peyre ef al. 2019).

Fruit species originate in the Andes, known as “exotic” ones in
temperate zones and having a great potential for national producers
and consumers and, furthermore, are exported in significant
quantities (Moreno-Miranda e a/. 2019; National Research Council,
1989). These fruits represent an important part in the diet of the
Andean population and are increasingly found in specialized markets
(Acosta-Quezada ez al. 2015).

Many fruit trees have their origin in the Andean areas (Ligarreto,
2012), especially numerous Solanaceous species (Blancke, 2016;
Criollo et al. 2017). Solanaceae is one of the main families of
economically important plants in Colombia (Torres-Gonzalez, 2019;
Almanza-Merchan ez al. 2016). These are the plants of indeterminate
growth, that is, flowering, fruiting, and vegetative growth occur at
the same time (Fischer ez a/. 2011). Rodriguez-Burruezo ef al. (2011)
stated that the exploitation of the genetic variation of the Andean
Solanaceous fruit trees increases the opportunity to achieve the
adaptation of these crops to the subtropical climates.

Plant ecophysiology is understood as the study of the plant behavior
in a particular habitat, which helps to recognize their performance
in cultivation and, in addition, facilitates management decisions by
the producer, but always taking into account that the maximum
production of a species, that is, its genetic potential, can only be
obtained when the environmental conditions are close to optimal
(Pérez & Melgarejo, 2015). Likewise, for the researcher, in-depth
knowledge of the physiological responses that originate from the
different types of abiotic stress improves the design of methods and
mechanisms to increase the tolerance of plants to different stresses
(Ngasoh e al. 2019). The ecophysiological factors that affect these
crops are mainly altitude, temperature, solar radiation, precipitation,
and wind (Fischer & Melgarejo, 2020; Restrepo-Diaz & Sanchez-
Reinoso, 2020). And the effect of air pressure that decreases with
altitude should not be forgotten because it influences different
characteristics of the plants, such as the number of stomata (Fischer
& Melgarejo, 2020). Due to the absence of temperature seasons that
influence plant physiology in the tropics, these are replaced by the
rainy and dry seasons (Fischer & Parra-Coronado, 2020).

No ecophysiological factor acts alone, but these always appear
together, that is, ecophysiology is a multidimensional discipline
and many trials done under the phytotron conditions with only
one or two changing factors are hardly applicable to the reality
of the climate in a defined area (Fischer e a/. 2016; Restrepo-
Diaz & Sanchez-Reinoso, 2020). Likewise, the conditions of one
country are only partially applicable to another country or area
different from the original one (Fischer & Orduz-Rodriguez,
2012). Recording the physiological and growth responses of plants
to environmental factors is not always an easy tusk to achieve in
cultivation (Saavedra ez a/. 2020), for which, in many cases, artificial
growth facilities (greenhouses, growth chambers, phytotrons) and
sophisticated equipment are employed for the measurement of
these ecophysiological variables. Some progress has been made in
the recent decades, which was reflected in increasing productivity
of fruit trees, however, these are now being re-evaluated due to
the impacts of climate change (Restrepo-Diaz & Sanchez-Reinoso,
2020).

The objective of this literature review was to present the important
ecophysiological information on four fruit species of the Solanaceae
family of the Andes, cape gooseberry, tree tomato, lulo, and
sweet cucumber, to illustrate their climatic requirements and the
climate effects on their physiology as the bases for their sustainable
cultivation and genetic improvement of the crops. On the other
hand, and in accordance with Cronin ez a/ (2008) this literature
review can provide the basis for future research projects.

MATERIALS AND METHODS

This document consists of a literature review, for this reason, it was
necessary to assess an information in different databases through
the Internet, including Science direct, Scopus, Scielo, and Google
Academic. The search was made using the keywords (in English
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climate fruit growth”, Physalis pernviana, Solanun betaceum, Solanum
quitoense, and Solanum muricatum. From these databases, 73 sources
were obtained that include web pages (from reliable authors), books,
and (mostly) scientific articles from the last 31 years, in English and
Spanish, both from national and international scientific journals.
Interestingly, the most of these sources were both Colombian
journals and authors; this indicates that the largest amount of
research on the ecophysiology of the species treated in this review
has been carried out in Colombia.

RESULTS AND DISCUSSION

Climate change aspects of the Andes. Marengo ¢/ a/. (2011)
reported that precipitation rates in the tropical Andes will increase
by 20 to 25%; additionally, for many fruit crops, such as cape
gooseberry, the global warming will have a higher impact on their
growth at the low altitudes. The IPCC technical summary (Shukla
et al. 2019) clearly indicates that almost all fruits and vegetables,
which are key elements for a healthy diet, are among the crops
most susceptible to climate change and that their yield and quality
will be reduced as warming increases, especially in tropical and
subtropical areas.

In their very extensive study on the phenology of fruiting in the
American Neotropics, Mendoza ef al. (2017) found that the climatic
factor that mostly regulates this reproductive phase is rain (73.4%),
followed by air temperature (19.3%), solar radiation or photoperiod
(3.2%), and only the 1.4% physiological events is attributed to the
Nifio-Southern Oscillation (ENSO).

Not only in the Andes the fruit production is subject to growing
uncertainty in the areas where negative climate changes are expected.
The climatic alterations can also be considered to increase fruit
production in some areas until they drive a productive expansion
(Raza ez al. 2020; Fischer & Melgarejo, 2021). Thus, the advantage of
the Andean crops, according to the authors of the present review,
is that the increase in temperature due to global warming might
not affect them as much, because these can be grown at a higher
altitude and, thus, find the optimal temperature. Crop physiologists,
such as the Brazilian, DaMatta ¢# a/. (2010) suggested that global
warming will cause crops to grow faster, with small changes in their
development, such as flowering and fruiting, depending on the
species. They also proposed that C3 crops (most fruit trees) will,
possibly, produce larger plants using less water due to the increase
in atmospheric COz, in the event that other stress conditions do
not occur. In addition, it should be considered that Ligarreto (2012)
classified these Andean crops as having a minimal environmental
impact.

Ecophysiological aspects of the tropical altitude. The tropical
altitude is suitable for many fruit species, also for some native to
other regions of the world, some thriving up to 3,000m a.s.l., taking
into account that the frost season should not affect the reproductive
growth of the plants (Fischer & Orduz-Rodriguez, 2012). At the
same time, the tropics have an advantage for being the regions
with thermal uniformity, that is, the monthly average temperatures

almost do not change during the year and, on the other hand, high
solar radiation favors fruit formation with a thick skin and high
antioxidant content, that be a prominent aspect for consumers,
but also, in extreme cases, causing a fruit sunburn (Fischer, 2000;
Fischer e al. 20106).

Regarding the growth and phenological phases of fruit trees, the
temperature, which decreases with altitude (about 0.6°C per each
100m) increases the duration of these phases, that is, the fruit
ripening happens later than in the lower areas still suitable for the
cultivation (Fischer & Orduz-Rodriguez, 2012). Furthermore, as
these authors mention that, with increasing altitude the partial
pressure of gases (CO2, Oz, N2) and water vapor is reduced as well
as the precipitation decreases from 1,300 to 1,500m a.s.l., while the
intensity of the visible and infrared UV radiation and wind speed
increase.

These fruit trees as well as, in general, the plants of the high
Andean regions are of the lower size, possibly due to the influence
of ultraviolet (UV) light on the production of auxins (Fischer
& Melgarejo, 2014) and/or the effect of UV light on the minor
synthesis of gibberellins in the internodes (Buchanan ez a/. 2015),
compared to those that grow at lower elevations. Additionally, the
fruit trees grown at the high altitudes have lesser leaf expansion,
and the leaves are thicker due to an increase in the number of
parenchyma layers and a thicker cuticle to better resist UV light
(Fischer & Miranda, 2021).

The cape gooseberry (Physalis peruviana L.). As a typical
plant of the Andes (Tables 1, 2; Figure 1a) it finds very favorable
conditions for growth, production, and quality in Colombia between
1,800 and 2,700m a.s.l. (corresponds to temperatures of 13 to 16°C
(Table 2) (Fischer & Melgarejo, 2020), with altitudes between 2,200
and 2,400m a.s.]. being the best conditions for the commercial
production, while Blancke (2016) mentioned its general adaptation
in the Andes between 1,000 and 3,000m a.s.l. This species is highly
adapted to low temperatures, has a base temperature (minimum)
for stem development of 6.3°C and only 1.9°C as a minimum
temperature for fruit development (Salazar ef a/. 2008). Its leaves,
flowers, calyxes, and young fruits do not resist temperatures below
0°C, while high temperatutres (>30°C) cause the abortion of flowers
(Fischer & Melgarejo, 2014; Carrillo-Perdomo ez al. 2015).

It is highly adapted to high solar radiation and abrupt changes
between the day and night temperatures, due to the calyx that
encloses and protects the fruit and the trichome layer that covers
the entire green part of the plants, especially the leaves (Ramirez
et al. 2013). It is possible that due to the reduced gas pressure with
increasing altitude, the plants form a greater number of foliar
stomata in the areas of higher altitude (Fischer & Melgarejo, 2020).
The solar radiation incident on the calyx and the two adjacent
leaves, with which the fruit grows in each node of the reproductive
part of the plant, are especially important for fruit filling (Fischer
et al. 2015). Some 1,500-2,000h of sunlight per year favor the
overall performance, yield and fruit quality (Mora e# a/. 20006). This
crop showed a foliar photosynthetic rate under the conditions of
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Table 1. Origin of various fruit species of Solanaceae family grown in the Andean region.

Species Zones and countries of origin Authors
Cape 80 oseb'erry Andes of Peru, Brazil, Chile, Ecuador, and Colombia | Fischer & Melgarejo, 2020
(Physalis peruviana 1..)

Tree tomato

Andes of Colombia, Ecuadot, Peru, Bolivia, and Chile | Blancke, 2016
(Solanum betaceum Cav.)

Lulo (Solanum quitoense Lam.) | Humid forests of Colombia, Ecuador, and Peru Lobo-Arias ez al. 2007

Sweet cucumber Western regions of the Andes and intermountain val-

(Solanum muricatum Aiton) leys of Ecuador, Peru, Northern Chile, and Colombia Blancke, 2016

Table 2. Altitudes, temperatures, and precipitation recommended for vatious Solanaceous fruit crops in the Andean region of Colombia.

Species Altitude Temperature Precipitation Author(s)
(m a.s.l) range (°C) (mm year™)
Cape gooseberry 1,800-2,800 13-16 1,000-1,800 Fischer & Melgarejo (2020)
Tree tomato 1,800-2,600 18-23 1,500-2,000 Bonnet & Cardenas (2012)
Lulo 1,600-2,400 16-24 1,000-2,800 Paull & Duarte (2012)
Sweet cucumber* 900-2,800 18-24 500-800 Sanchez (s.f.)

* Recommended for the conditions of Peru.

Figure 1. Plants in reproductive stage. a. cape gooseberry; b. tree tomato; c. lulo; d. sweet cucumber fruits.
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Bogota (2,600m a.s.l) equal to 10.545umol CO> m” s™ (Fischer &
Melgarejo, 2020).

A constant water supply is essential for the indeterminate growth
of this plant and a rainfall of 1,000 to 1,800mm year’1 evenly
distributed throughout the year is favorable for its performance
(Fischer & Melgarejo, 2020). However, the soil moisture level must
always be slightly below field capacity because cape gooseberry,
in general, does not withstand waterlogging for more than 4 days
(Table 3) (Aldana ez al. 2014). Prolonged rainy seasons or heavy
rains after a dry season can cause fruit cracking, which is the most
important physiological disorder in this species and which can be
alleviated with optimal fertilization with calcium, boron, potassium,
and magnesium (Torres ez al. 2016; Garzon-Acosta et al. 2014).
Severe water stress, which occurs especially during the El Nifio
phenomenon, reduces plant growth, resulting in smaller leaves and
fruits (Fischer & Melgarejo, 2014). Torres e al. (2004) recorded that
water stress, particularly during the first weeks of the reproductive
phase, generates smaller fruits and lower productivity in general.
Alvarez-Herrera et al. (2019) found that an irrigation coefficient of
1.1 originated higher values of the efficient water use of the Yicr
and Ysem, which is the most recommended for a production of large
fruits and with less cracking;

For the productive areas in Ecuador, Carrillo-Perdomo ez a/. (2015)
reported altitudes up to 3,300m suitable for cultivation of cape
gooseberry, with an optimum temperature of about 18°C, high
incident solar radiation, and annual rainfall of 1,000-2,000mm. The
cape gooseberry does not resist high wind speed (Carrillo-Perdomo
et al. 2015) due to the deformation and breakage of branches and
leaves, also due to the fall of the reproductive organs (Fischer
& Melgarejo, 2014). This situation that makes it necessary the
installation of living barriers against the wind, which also favors the
flight of pollinating bees for this species that might no longer fly
at wind speeds superior than 10km h' (National Research Council,
1989). On the contrary, low winds benefit the maintenance of a
stable CO:2 concentration in the plant to guarantee the optimal
photosynthesis (Fischer & Orduz-Rodriguez, 2012), but in cape
gooseberry it is necessary to quantitatively evaluate these aspects.

In general, hailstorms that can occur sporadically in many producing
areas, affect these four Solanaceae fruit crops, causing impacts by
hail, depending on their diameter, speed, density, and duration, in
all green parts, especially in the leaves, but also in flowers, fruits,
tender shoots and, in the case of cape gooseberry, in the calyxes, in
addition, causing the fall of these organs. However, if the damage
was not so serious, the plant can recover and terminate its vegetative

Table 3. Physiological response of Cape gooseberry, tree tomato, lulo, and sweet cucumber to waterlogging in the Andes.

Crop Physiological response to waterlogging

Reference

Cape gooseberry

The dry biomass of plant organs was reduced after 4 days of waterlogging. The
leaf area, stem base diameter, plant height, and number of reproductive organs
decreased after 6 days of waterlogging, The chlorophyll content (SPAD index) of
the 8-day flooded plants was significantly lower than in the control plants.

Aldana et al. 2014

Cape gooseberry

Waterlogging for 6 days + Fusarium oxysporum decreased root growth, root diam-
etet, and leaf area.

The two stresses combined reduced stomatal conductance and rates of transpira-
tion and photosynthesis.

Villarreal-Navatrete ez al.
2017

Tree tomato

Flooded plants had lower stem growth, reduced biomass, and lower chlorophyll
content (SPAD index).

Likewise, the plants had a lower rate of Fu/Fm rate and lower efficient use of
nitrogen but a higher distribution of assimilates to the stems.

Betancourt-Osotio

et al. 2016

Watetlogging reduced chlorophyll content, stomatal conductance, transpiration,

Florez-Velasco

logging and plant shading.

Lulo efficient nitrogen use, and leaf succulence, but increased stem diameter.
et al. 2015
After 3 days of flooding, photosystem II of photosynthesis was damaged, reduc-
Lulo ing the chlorophyll content. Waterlogging for 6 and 9 days decreased the relative | Sanchez-Reinoso ez 2/ 2019
water content (RWC) in the leaves.
Waterlogging during 6 and 9 days reduced root growth (root diameter, length,
Lulo volume, and dry weight). There was no interaction between the effects of water- | Cardona ez al. 2016

Sweet cucumber

Moderately tolerant to waterlogging, presenting more tolerance than tree tomato
and tomato to this factor.

Nuez & Ruiz, 1996
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and reproductive growth cycles (Ramirez & Kallarackal, 2019;
Fischer & Orduz-Rodriguez, 2012). In the case of larger losses and
damages that decrease the plant production and predispose these
to infections by pathogens, it is recommended to install the crops
in areas with little probability of this phenomenon and, in any case,
the application of fungicides is advisable, such as the protectants to
prevent infection of damaged tissues by pathogens (Torres ef al. 2010).

The tree tomato (Solanum betaceum Cav.). In Colombia, the
tree tomato or tamarillo (Figure 1b) is found in the wild between
1,200 and 3,000m a.s.l. and produces better from 1,800 to 2,600m
a.s.l. (optimal 1,900-2,300m a.s.l.), with temperatures between 13
and 20°C (Bonnet & Cardenas, 2012a). These authors recommend
planting this crop in areas with an annual rainfall between 1,500
and 2,000mm well distributed throughout the year but with a
short “summer”, to have no damage in the production and fruit
quality; these suggest a relative air humidity of around 80% and the
installation of a drain on flat sites to avoid waterlogging. Due to the
danger of anthracnose (Colletotrichum gloesporioides), Angulo (2003)
warned of such high levels of air humidity and recommends sites
with air humidity of 60 to 70% for its cultivation, also choosing
regions with a direct sunlight of about 1,800 to 2,300h per year.

In the Andean equatorial zone, the tree tomato can be found between
1,500 and 3,000m a.s.l. (Lagos e# al. 2011), while, in subtropical
regions, it can grow up to the sea level and resist light frosts
(Blancke, 2016). It does not resist dry periods that especially affect
its flowering, due to a very superficial root system (Carrillo-Perdomo
et al. 2015; Ramirez & Kallarackal, 2019) requiring additional
irrigation under these conditions (National Research Council,
1989). This species subjected to water stress in the vegetative stage
decreases growth rate, total dry weight, transpiration, and stomatal
conductance (Clavijo-Sanchez ez /. 2015).

For the areas of its cultivation in Ecuador, Carrillo-Perdomo e7 al.
(2015) reported that the tree tomato is tolerant to low temperatures,
which must be above 10°C, while the temperatures equal to or
lower than -2°C cause damage to the seedlings, branches, and young
foliage. It grows well in temperature regimes between 13 and 24°C,
with optimum temperatures between 16 and 19°C (Chafiag-Miramag
et al. 2017). In the case of colder subtropical zones, Carrillo-Perdomo
et al. (2015) reported suitable altitudes between 300 and 1,000m
a.s.l,, likewise indicating that low temperatures promote flowering,
while excessively hot temperatures affect all reproductive phases
and promote rarely set fruits (National Research Council, 1989),
at the same time, these processes require more research. The tree
tomato does not withstand strong winds due to its fragile branches,
soft leaves, and superficial rooting; therefore, it cannot be grown in
heavy, compacted, and flooded soils (Carrillo-Perdomo ez al. 2015).
However, the wind as an abiotic vector, plays an important role in
its pollination (Schotsmans e7 /. 2011; Ramirez & Kallarackal, 2019).

Lulo (Solanum quitoense Lam.). The lulo or naranjilla (Figure
1c) adapts well to the humid high Andean tropics because it
requires an annual precipitation between 1,000 and 2,800mm, with
an optimum of about 2,500mm, but also thrives well in drier areas

with supplementary irrigation (Paull & Duarte, 2012). As for the
temperature range for plant growth, these authors recommended
16 to 24°C (optimal 17-18°C) and an altitude between 1,600 to
2,400m a.s.l., favoring 2,000 to 2,400m a.s.l. for the most acidic type
of fruits with thorns S. quitoense f. septentrionale and 1,600-2000m
a.s.l. for S. guitoense £. quitoense, without thorns. Bonnet & Cardenas
(2012b) attributed the areas located between 2,000 and 2,200m
a.s.l. as the most optimal for its development. Pulido e a/. (2008),
through the regression calculation method, estimated 9.6°C as the
base (minimum) temperature for the node appearance on the lulo
main stem, while Cruz e 2/ (2007) found accumulation of thermal
units above 8°C as a growth threshold for S. guitoense £. septentrionale.
For the same accession, at the vegetative phenological stage, the
photosynthetic rates from 4 to 8umol CO> m™s" were reported,
which were directly related to photosynthetically active radiation
in conditions of the low montane humid forest (bh-MB) of the
FEastern Antioquia (Colombia) (Medina ez a/. 2000).

Bonnet & Cardenas (2012b) placed special emphasis on the high-
water requirement of these plants, from 1,800 to 3,000mm, well
distributed throughout the year, which means a daily water level of
about 4 to 6mm. In addition, the lulo is adapted to shady conditions
(Cardona ef al. 2010), for which Lobo (2006) characterized it as an
understory plant, developing large leaves with different insertion
angles that allow better capture of solar radiation that passes through
the canopies of trees, however, Paull & Duarte (2012) and Casierra-
Posada e al. (2013) stated that it also grows and produces well in full
sun. In this regard, Lobo (2006) observed that the lulo at full sun
exposure accelerated senescence, shortening the productive period.

To ensure a better protection against UV rays, this species develops
trichomes on petals and fruits as well as a high anthocyanin content
in the vascular system (Fischer & Orduz-Rodriguez, 2012). Bonnet
& Cardenas (2012b) suggested to cultivate lulo in the dark until
recommending a black shading net (25-35% shade), because this
plant would not close the stomata, which would further conduct to
significant loses of water through transpiration, corresponding to a
mean transpiration of 50L d" of water per plant in extreme cases.
In Ecuador, Revelo ¢# a/. (2010) stated that a lulo plantation requires
a rainfall between 1,500 and 4,000mm year’l, with an optimum
of 2,500mm. However, it is to consider (Tab. 3) that the growth
of the lulo suffers from waterlogging after 6 days (Cardona ez 4.
2016) and the photosynthesis is affected by this condition after 3
days (Sanchez-Reinoso e al. 2019). Foliar applications of nitrogen
decreased the detrimental effect of waterlogging in the lulo (Florez-
Velasco e# al. 2015).

Ramirez et al. (2018) reported that the lulo plants respond to the
photoperiod with respect to flowering, Messinger & Lauerer (2015)
found under greenhouse conditions in Germany that, in plants under
long day conditions (summer in Germany), the period between the
flower bud appearance and fruit set becomes shorter, reducing the
flowering period and time until harvest. These authors also observed
that under short day conditions (winter) the lulo plants produced
more flowers than during long days in summer. Likewise, the
National Research Council (1989) mentioned that the lulo, possibly,
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needs short-day environments for its pollination. Due to all the
above, the lulo plants need even more research on ecophysiological
issues. Since, after Paull & Duarte (2012), the lulo has good rooting
and anchoring it should not be very susceptible to uprooting by
strong winds, but its large, soft leaves can be seriously damaged.

The sweet cucumber (Solanum muricatum Aiton). The sweet
cucumber or pear melon is not as well-known as the first three
fruit species of this review, for which the National Research
Council (1989) and Herraiz ef al. (2016) described it as an Andean
crop “neglected” or “lost”; however, it draws a growing interest in
many markets for exotic fruits (Rodriguez-Burruezo ez al. 2011).
Apart from its greater distribution in the western Andean regions
and inter-Andean valleys of Ecuador, Peru, North Chile and
Colombia, Mathias & Madeira (2017) affirmed for Brazil that the
sweet cucumber has a good climatic adaptation to the South and
Southeast regions, being also planted in areas of the Midwest of
Brazil at altitudes above 1,000m a.s.l.

The fruit set and yield in this crop are affected by high temperatures
(Rodriguez-Burruezo ef al. 2011), due to the negative effect of heat
on pollen fertility (Ruiz e/ al. 1996). Thus, Nuez & Ruiz (1996)
observed abortion of flower buds when temperatures exceeded
35°C and/or conditions of extreme drought, for which these
authors recommended growth areas with temperatures below 25°C
to guarantee optimal fruit set, while posterior higher temperatures
would no longer affect the plant development. Nuez & Ruiz (1996)
estimated about 8 to 10°C as minimum night temperatures for the
proper fruit set, while temperatures below 10-12°C can affect the
fruit development (Infoagro, 2020). Jana (2019) reported between
380 and 550 degree days (base temperature of 10°C) are necessary
for flowering to occur, while 400 to 580 degree days are required
for fruit set, and harvest requires only at least 1,000 degree days.

However, there are ecotypes that, despite their low pollen fertility,
can give high yields because these have facultative parthenocarpy
(Rodriguez-Burruezo ef al. 2011). These authors reported that the
cultivation of sweet cucumber under Mediterranean greenhouse
conditions showed a higher yield in the autumn-winter season than
in the spring-summer season, probably because the autumn-winter
conditions were more consistent with those suitable for the fruit
development. Sweet cucumber is susceptible to frost, with damage
depending on the duration and magnitude of these conditions,
however, after a short frost of -2°C the plants usually recovered
from damage done to leaves and small fruits (Nuez & Ruiz, 19906).
Due to its very superficial roots, sweet cucumber is susceptible to
drought, however, according to Nuez & Ruiz (1990), it recovers
quickly. Blancke (2016) observed in sweet cucumber that the color
of flowers depends on the temperature because plants in cooler
environments below 20°C develop blue flowers and those grown
above 25°C develop white flowers, while Herraiz ef al. (2015)
reported that high temperatures reduced a content of sugars in
the fruits, which acquired an unpleasant taste. The intensity of the
“exotic” color of fruits (purple stripes, Figure 1d) depends on solar
radiation that increases the accumulation of anthocyanin pigments
promoting the purple color of flowers and fruits (Jana, 2019).

In contrast to the first three Solanaceae listed in this review, sweet
cucumber has been studied for the effects of an environmental
enrichment with COz (350, 700, and 1,050ppm) in growth chambers
in cv. Xotus (Chen ¢ al. 1999a), which increased foliar and fruit
growth as well as the net assimilation rate and relative growth
with the air enrichment with CO2 to 750 and 1,050ppm. Also,
Chen et al. (1999b) found that the net photosynthetic rate and the
photosynthetic water use efficiency increased substantially at CO2
levels of 700 and 1,050ppm as compared to 350ppm. Nuez & Ruiz
(1996) reported damage to the foliage by strong winds, especially, if
these were combined with low temperatures, while Infoagro (2020)
also warned of the danger of very hot and dry winds, for which
wind curtains are necessary in areas exposed to this factor.

This literature review indicates that the information on these
four crops, which are the most widely planted nightshade fruit
trees in the Andes, is not very abundant and only began gaining a
structure starting from the 1990s. The publications refer mostly to
observations of field crops in certain microclimates and altitudinal
ranges, where the species prospered very satisfactorily (Bonnet &
Cardenas, 2012a; 2012b).

Some of these adaptations of crop defenses against high UV light
intensities include the abundant trichomes in cape gooseberry and
lulo (Ramirez ez al. 2013), and the greater synthesis of anthocyanins
in tree tomato and lulo (Fischer & Orduz-Rodriguez, 2012).
Likewise, these species do not withstand high temperatures during
flowering, for which a maximum temperature between 25 and 30°C
is recommended (Fischer & Melgarejo, 2014), which shows their
nature of fruit trees originating in the Andean areas (Blancke, 2010).

With low knowledge of ecophysiology in these species (Sanchez-
Reinoso e al. 2019), more studies of a physiological, biochemical,
and even molecular aspects are required, which would allow for
the understanding of the influence of climate on photosynthesis,
transpiration, respiration, sink-source relationship, hormonal
behavior, among others processes, to make more accurate decisions
related to the growing of these species in the most appropriate areas
to provide a better expression of their genetic potential (Pérez &
Melgarejo, 2015).

Especially, it is important to know these species reaction and
adjustments to the climate change, such as the increase in
temperature or the presence of extreme events such as drought
and heavy rains that generate floods and waterlogging (Shukla ez
al. 2019). This climatic variability affects the physiology of these
solanaceous plants and demands the implementation of different
agronomic practices for specific management of the temperature
and precipitation effects (Fischer & Miranda, 2021). In addition, the
effects of raising CO:2 concentrations on the growth, physiology,
production, and quality of these Solanaceae should be addressed,
in order to improve their adaptation to this new ecophysiological
situation and to re-evaluate the results of the previous studies
(Restrepo-Diaz & Sanchez-Reinoso, 2020).
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