Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano

Enzymatic synthesis of 4-methoxycinnamoylglycerol Uv filter mediated by immobilized-lipase and nanoparticle formation on N-succinylchitosan

Contenido principal del artículo

Resumen

 


En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el proceso de purificación por extracción líquido-líquido. Las entidades de glicerilo libre favorecen su incorporación en nanopartículas de N-succinil-quitosano, con un tamaño de alrededor de 185±77nm, que son promisorias para los productos de protección solar.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M.; YOUSEFI, P.; MOHAMMADI, J.; BRASK, J. 2016. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 91:196-206.

https://doi.org/10.1016/j.renene.2016.01.053

BASSI, J.J.; TODERO, L.M.; LAGE, F.A.P.; KHEDY, G.I.; DUCAS, J.D.; CUSTÓDIO, A.P.; PINTO, M.A.; MENDES, A.A. 2016. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Internal J. Biological Macromolecules. 92:900-909.

https://doi.org/10.1016/j.ijbiomac.2016.07.097

BASTIDA, A.; SABUQUILLO, P.; ARMISEN, P.; FERNÁNDEZ-LAFUENTE, R.; HUGUET, J.; GUISÁN, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering. 58(5):486-493.

https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9

BERNAL, C.; POVEDA-JARAMILLO, J.C.; MESA, M. 2018. Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chemical Engineering J. 334:760-767.

https://doi.org/10.1016/j.cej.2017.10.082

CIPOLATTI, E.P.; VALÉRIO, A.; NINOW, J.L.; DE OLIVEIRA, D.; PESSELA, B.C. 2016. Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. Biochemical Engineering J. 112:54-60.

https://doi.org/10.1016/j.bej.2016.04.006

ESCOBAR, S.; BERNAL, C.; BOLIVAR, J.M.; NIDETZKY, B.; LÓPEZ-GALLEGO, F.; MESA, M. 2018. Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis. 449:106-113.

https://doi.org/10.1016/j.mcat.2018.02.024

FERENC, W.; CRISTÓVÃO, B.; SARZYŃSKI, J.; SADOWSKI, P. 2012. Complexes of the selected transition metal ions with 4-methoxycinnamic acid: Physico-chemical properties. J. Thermal Analysis and Calorimetry. 110(2):739-748.

https://doi.org/10.1007/s10973-011-1935-5

FERNANDEZ-LAFUENTE, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Molecular Catalysis B: Enzymatic. 62(3):197-212.

https://doi.org/10.1016/j.molcatb.2009.11.010

FERNANDEZ-LORENTE, G.; CABRERA, Z.; GODOY, C.; FERNANDEZ-LAFUENTE, R.; PALOMO, J.M.; GUISAN, J.M. 2008. Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry. 43(10):1061-1067.

https://doi.org/10.1016/j.procbio.2008.05.009

HANSON, K.M.; NARAYANAN, S.; NICHOLS, V.M.; BARDEEN, C.J. 2015. Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochemical and Photobiological Sciences. 14(9):1607–1616.

https://doi.org/10.1039/c5pp00074b

HOLSER, R.A. 2008. Kinetics of cinnamoyl glycerol formation. JAOCS, J. the American Oil Chemists’ Society. 85(3):221-225.

https://doi.org/10.1007/s11746-007-1189-3

HOLSER, R.A.; MITCHELL, T.R.; HARRY-O’KURU, R.E.; VAUGHN, S.F.; WALTER, E.; HIMMELSBACH, D. 2008. Preparation and Characterization of 4-Methoxy Cinnamoyl Glycerol. J. American Oil Chemists’ Society. 85(4):347-351.

https://doi.org/10.1007/s11746-008-1197-y

KATZ, L.M.; DEWAN, K.; BRONAUGH, R.L. 2015. Nanotechnology in cosmetics. Food and Chemical Toxicology. 85:127-137.

https://doi.org/10.1016/j.fct.2015.06.020

KUO, S.-J.; PARKIN, K.L. 1996. Solvent polarity influences product selectivity of lipase-mediated esterification reactions in microaqueous media. J. American Oil Chemists’ Society. 73(11):1427-1433.

https://doi.org/10.1007/BF02523507

LEE, C.H.; PARKIN, K.L. 2001. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnology and Bioengineering. 75(2):219-227.

https://doi.org/10.1002/bit.10009

LEE, G.S.; WIDJAJA, A.; JU, Y.H. 2006. Enzymatic synthesis of cinnamic acid derivatives. Biotechnology Letters. 28(8):581-585.

https://doi.org/10.1007/s10529-006-0019-2

MATTE, C.R.; BUSSAMARA, R.; DUPONT, J.; RODRIGUES, R.C.; HERTZ, P.F.; AYUB, M.A.Z. 2014. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: Characterization and applications. Applied Biochemistry and Biotechnology. 172(5):2507-2520.

https://doi.org/10.1007/s12010-013-0702-4

MONSALVE, Y.; SIERRA, L.; LÓPEZ, B.L. 2015. Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromolecular Symposia. 354(1):91-98.

https://doi.org/10.1002/masy.201400128

NAIK, S.; BASU, A.; SAIKIA, R.; MADAN, B.; PAUL, P.; CHATERJEE, R.; BRASK, J.; SVENDSEN, A. 2010. Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. J. Molecular Catalysis B: Enzymatic. 65:18-23.

https://doi.org/10.1016/j.molcatb.2010.01.002

NOHYNEK, G.J.; DUFOUR, E.K. 2012. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Archives of Toxicology. 86(7):1063-1075.

https://doi.org/10.1007/s00204-012-0831-5

PALACIO, J.; MONSALVE, Y.; RAMÍREZ-RODRÍGUEZ, F.; LÓPEZ, B. 2020. Study of encapsulation of polyphenols on succinyl-chitosan nanoparticles. J. Drug Delivery Science and Technology. 57:101610.

https://doi.org/10.1016/j.jddst.2020.101610

PATIL, D.; DEV, B.; NAG, A. 2011. Lipase-catalyzed synthesis of 4-methoxy cinnamoyl glycerol. J. Molecular Catalysis B: Enzymatic. 73(1-4):5-8.

https://doi.org/10.1016/j.molcatb.2011.07.002

SAHATSAPAN, N.; ROJANARATA, T.; NGAWHIRUNPAT, T.; OPANASOPIT, P.; PATROJANASOPHON, P. 2019. Catechol-functionalized succinyl chitosan for novel mucoadhesive drug delivery. Key Engineering Materials. 819:21-26.

https://doi.org/10.4028/www.scientific.net/KEM.819.21

SANTOS, A.C.; MORAIS, F.; SIMÕES, A.; PEREIRA, I.; SEQUEIRA, J.A.D.; PEREIRA-SILVA, M.; VEIGA, F.; RIBEIRO, A. 2019. Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery. 16(4):313-330.

https://doi.org/10.1080/17425247.2019.1585426

SHAATH, N.A. 2010. Ultraviolet filters. Photochem. Photobiol. Sci. 9(4):464-469.

https://doi.org/10.1039/B9PP00174C

SOTO, I.D.; ESCOBAR, S.; MESA, M. 2017. Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. Materials Science and Engineering C. 79:525-532.

https://doi.org/10.1016/j.msec.2017.05.088

SUN, W.J.; ZHAO, H.X.; CUI, F.J.; LI, Y.H.; YU, S.L.; ZHOU, Q.; QIAN, J.Y.; DONG, Y. 2013. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chemistry Central J. 7(1):1-13.

https://doi.org/10.1186/1752-153X-7-114

YESILOGLU, Y.; KILIC, I. 2004. Lipase-Catalyzed Esterification of Glycerol and Oleic Acid. JAOCS. J. American Oil Chemists’ Society. 81(3):281-284.

https://doi.org/10.1007/s11746-004-0896-5

ZHANG, C.-G.; ZHU, Q.-L.; ZHOU, Y.; LIU, Y.; CHEN, W.-L.; YUAN, Z.-Q.; YANG, S.-D.; ZHOU, X.-F.; ZHU, A.-J.; ZHANG, X.-N.; JIN, Y. 2014. N-succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International J. Nanomedicine. 9(1):2919-2932.

https://doi.org/10.2147/IJN.S59799

ZHOU, Z.; INAYAT, A.; SCHWIEGER, W.; HARTMANN, M. 2012. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials. 154:133-141.

https://doi.org/10.1016/j.micromeso.2012.01.003

Citado por