Concordancia entre la composición corporal medida con un inbody 120 y un skulpt chisel en atletas de combate adolescentes.

Contenido principal del artículo

Autores

Roberto González Marenco https://orcid.org/0000-0002-3744-5180
Martha Medina Escobedo https://orcid.org/0000-0002-4275-9387
Mariel Garrido Balam https://orcid.org/0000-0002-7726-8107
Jorge Eúan Zapata https://orcid.org/0000-0002-0090-0258
Antonio Canto Barreiro https://orcid.org/0000-0003-2355-0737
Paola Vasquez Poot https://orcid.org/0000-0002-1343-4620
Krystel Cardona Martín https://orcid.org/0000-0002-5379-7143

Resumen

Introducción: La determinación de la composición corporal forma parte de la valoración morfofuncional del atleta; existiendo diferentes instrumentos para evaluarla. Objetivo: Comparar las mediciones de la composición corporal entre un InBody 120 y un Skulpt Chisel en una muestra de atletas de combate adolescentes. Metodología: Estudio cuantitativo con enfoque analítico, en el que se incluyó 24 varones (14,2±1,9años, 1,6±0,1m, 62,3±16,1kg, IMC 24,2±4,7kg/m2). Los sujetos fueron medidos con ambos instrumentos obteniendo los valores del porcentaje de grasa corporal (%GC), masa grasa (MG), porcentaje de masa muscular (%MM), masa muscular (MM) y calidad muscular (CM); siguiendo las instrucciones de los fabricantes. Se utilizó la prueba de t de student para muestras relacionadas, el coeficiente de correlación de Pearson, el coeficiente de correlación concordancia de Lin y los gráficos de Bland-Altman. Se consideró significativo una p<0,05. Resultados: No hubo diferencia significativa entre los valores medios del %GC (p=0,161) y MG (p=0,141) en la población total, pero si en la MG de los taekwondogas (p=0,042). El %GC y MG correlacionaron de manera positiva significativa entre ambos equipos de medición (r=0,898 y 0,959, de manera respectiva, p<0,01), similar para %MM y CM (r=0,771, p<0,01) pero no para MM y CM (r=-0,116, p=0,58). Se encontró una concordancia pobre para, el %GC (CCC=0,88, IC95%=0,75-0,94) y moderada para MG (CCC=0,95, IC95%=0,89-0,97), además los gráficos de Bland-Altman mostraron variaciones individuales clínicamente relevantes para ambas variables (>+/-5% y >+/-3kg, de manera respectiva). Conclusiones: Se concluye que las mediciones realizadas por ambos instrumentos presentaron correlaciones elevadas, pero no son concordantes ni intercambiables.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. AARON, R.; SHIFFMAN, C. 2006. Using Localized Impedance Measurements to Study Muscle Changes in Injury and Disease. Ann N Y Acad Sci. 904(1):171-180. https://doi.org/10.1111/j.1749-6632.2000.tb06443.x

2. AGUILAR, L. 2005. Traumatismos y tendinitis de las articulaciones. Offarm. 24(3):60-68.

3. ALVERO, J.; CORREAS, L; RONCONI, M.; FERNÁNDEZ, R.; MANZAÑIDO, P. 2011. La bioimpedancia eléctrica como método de estimación de la composición corporal: normas prácticas de utilización. Rev Andal Med Deporte. 4(4):167-174.

4. BETANCOURT, H.; SALINA, O.; ARÉCHIGA, J. 2011. Análisis cineantropométrico de la volumetría muscular de atletas de alto rendimiento de deportes olímpicos de combate. An Antrop. 45:113-122.

5. BILJANA, S.; BORISLAV, O.; GORAN, D.; STOKIC, E.; SINISA, B. 2012. Relationship between body mass index and body fat in children-Age and gender differences. Obes Res Clin Pract. 6(2):167-173. https://doi.org/10.1016/j.orcp.2011.08.153

6. CHING, C.; CHEN, Y.; LU, L.; HSIEH, P.; HSIAO, C.; SUN, T.; SHIEH, H.; CHANG, K. 2013. Characterization of the muscle electrical properties in low back pain patients by electrical impedance myography. PLoSOne. 8(4):e61639. https://doi.org/10.1371/journal.pone.0061639

7. COLINA, E.; GONZÁLEZ, C.; MIRANDA, D. 2016. Miografía por impedancia eléctrica. Rev Col Med Fis Rehab. 26(1):38-49. http://dx.doi.org/10.28957/rcmfr.v26n1a4

8. CORTÉS-REYES, E.; RUBIO-ROMERO, J.; GAITÁN-DUARTE, H. 2009. Métodos estadísticos de evaluación de la concordancia y la reproducibilidad de pruebas diagnósticas. Rev Colomb Obstet Ginecol. 61(3):247-255.

9. COSTA, O.; ALONSO, D.; PATROCINIO, C.; CANDIA, R.; DE PAZ, J. 2015. Métodos de evaluación de la composición corporal: una revisión actualizada de descripción, aplicación, ventajas y desventajas. Arch Med Deporte. 32(6):387-394.

10. DE ONIS, M.; ONYANGO, A.; BORGHI, E.; SIYAM, A.; NISHIDA, C.; SIEKMANN, J. 2007. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 85(9):660-667. https://doi.org/10.2471/blt.07.043497

11. FRANCHINI, E.; NUNES, A.; MORAES, J.; DEL VECCHIO, F. 2007. Physical fitness and anthropometrical profile of the Brazilian male judo team. J Physiol Anthropol. 26(2):59-67. https://doi.org/10.2114/jpa2.26.59

12. GARROW, J. 1982. New approaches to body composition. Am J Clin Nutr. 35(5 Suppl):1152–1158. https://doi.org/10.1093/ajcn/35.5.1152

13. INBODY. 2019. InBody 120. Inbodylatinamerica.com. Disponible desde Internet en: http://www.inbodylatinamerica.com/Modelos/inbody_120

14. LEE, S.; GALLAGHER, D. 2008. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 11(5):566-572.

15. LIN, L. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 45(1):255-268.

16. LUSTGARTEN, M.; FIELDING, R. 2011. Assessment of analytical methods used to measure changes in body composition in the elderly and recommendations for their use in phase II clinical trials. J Nutr Health Aging. 15(5):368-375. https://doi.org/10.1007/s12603-011-0049-x

17. MARFELL-JONES, M.; STEWART, A.; CARTER, J. 2006. International standards for anthropometric assessment. in UNSW Press: Sydney.

18. MATA-ORDÓÑEZ, F.; SÁNCHEZ-OLIVER, A.; DOMÍNGUEZ-HERRERA, R. 2018. Importancia de la nutrición en las estrategias de pérdida de peso en deportes de combate. J Sport Health Res. 10(1):1-12.

19. MATTSSON, S.; THOMAS, B. 2006. Development of methods for body composition studies. Phys Med Biol. 51(13):R203-228. https://doi.org/10.1088/0031-9155/51/13/r13

20. MCARDLE, W.; KATCH, F.; KATCH, V. 2009. Sports and Exercise Nutrition. Lippincott Williams & Wilkins. 720p.

21. MCLESTER, C.; DEWITT, A.; ROOKS, R.; MCLESTER, J. 2018. An investigation of the accuracyand reliability of body composition assessed with a handheld electrical impedancemyography device. Eur J Sport Sci. 18(6):763-771. https://doi.org/10.1080/17461391.2018.1448458

22. MENÉNDEZ, J. 2017. Las artes marciales y deportes de combate en educación física. Una mirada hacia el kickboxing educativo. Revista Digital de Educación Física. 48:108-119.

23. MESA, L.; GARCÍA, T.; LINARES, F.; AGUILERA, B. 2015. Caracterización de la composición corporal de las atletas de taekwondo del estado Cojedes en el periodo de preparación general. Cuadernos de Psicología del Deporte. 12(211):89-94.

24. MILLER, R.; CHAMBERS, T.; BURNS, S. 2016. Validating InBody® 570 Multi-frequency Bioelectrical Impedance Analyzer versus DXA for Body Fat Percentage Analysis. JEP on line. 19(5):71-78.

25. MONTGOMERY, M.; MARTTINEN, R.; GALPIN, A. 2017. Comparison of Body Fat Results from 4 Bioelectrical Impedance Analysis Devices vs. Air Displacement Plethysmography in American Adolescent Wrestlers. IJKSS. 5(4):18-25. http://dx.doi.org/10.7575/aiac.ijkss.v.5n.4p.18

26. NAVALTA, J.; STONE, W.; LYONS, T. 2019. Ethical Issues Relating to Scientific Discovery in Exercise Science. International Journal of Exercise Science. 12(1):1-8.

27. PENICHE, C.; BOULLOSA, B. 2011. Nutrición aplicada al deporte. McGraw-Hill (México). 386p.

28. PORBÉN, S.; BORRÁS, A. 2003. Composición corporal. Acta Médica. 11(1):26-37.

29. RUTKOVE, S. 2009. Electrical Impedance Myography: Background, Current State, and Future Directions. Muscle Nerve. 40(6):936-946. https://dx.doi.org/10.1002%2Fmus.21362

30. RUTKOVE, S.; CARESS, J.; CARTWRIGHT, M.; BURNS, T.; WARDER, J.; DAVID, W.; GOYAL, N.; MARAGAKIS, N.; CLAWSON, L.; BENATAR, M.; USHER, S.; SHARMA, K.; GAUTAM, S.; NARAYANASWAMI, P.; RAYNOR, E.; WATSON, M.; SHEFNER, J. 2012. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler. 13(5):439-445. https://doi.org/10.3109/17482968.2012.688837

31. RUTKOVE, S.; DARRAS, B. 2013. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study. J Phys Conf Ser. 434(1):1-8. https://doi.org/10.1088/1742-6596/434/1/012069

32. SANT´ANNA, M.; PRIORE, S.; FRANCESCHINI, S. 2009. Métodos de avaliação da composição corporal emcrianças. Rev Paul Pediatr. 27(3):315-321. http://dx.doi.org/10.1590/S0103-05822009000300013

33. SHIFFMAN, C. 2013. Circuit modeling of the electrical impedance part III: Disuse following bone fracture. Physiol Meas. 34(5):487-502. https://doi.org/10.1088/0967-3334/34/5/487

34. SKULPT PERFORMANCE TRAINING SYSTEM. 2019. How sculpt compares. Disponible desde Internet en: https://www.skulpt.me/body_fat

35. TABBEN, M.; CHAOUACHI, A.; MAHFOUDHI, M.; ALOUI, A.; HABACHA, H.; TOURNY, C.; FRANCHINI, E. 2014. Physical and physiological characteristics of high-level combat sport athletes. J Sport Health Res. 5(1):1–5.

36. THIBAULT, R.; GENTON, L.; PICHARD, C. 2012. Body composition: why, when and for who? Clin Nutr. 31(4):435-447.

37. UTTER, A.; LAMBETH, P. 2010. Evaluation of multifrequency bioelectrical impedance analysis in assessing body composition of wrestlers. Med Sci Sports Exerc. 42(2):361-367. https://doi.org/10.1249/mss.0b013e3181b2e8b4

38. WANG, Z.; PIERSON, R.; HEYMSFIELD, S. 1992. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr. 56(1):19-28. https://doi.org/10.1093/ajcn/56.1.19

Descargas

La descarga de datos todavía no está disponible.