Respuesta hormonal adaptativa en atletas durante la práctica del voleibol de piso. Una aproximación desde la endocrinología del deporte

Adaptative hormonal response in athletes during indoor volleyball practice. An approach from sports endocrinology

Contenido principal del artículo

Jorge Andrés Barrero
María Alejandra Barrero-Casallas

Resumen

Introducción: Los cambios en el patrón de secreción hormonal constituyen uno de los principales mecanismos de regulación homeostática, en respuesta al ejercicio físico. Pese a que en los deportes de contacto se ha observado un aumento considerable en los marcadores séricos de estrés, la ausencia de contacto físico entre jugadores genera incertidumbre frente a la posibilidad de que, la respuesta endocrina, durante la práctica del voleibol de piso, sea poco significativa. Objetivo: La presente investigación desarrolla una revisión bibliográfica de la respuesta hormonal adaptativa en voleibolistas antes, durante y posterior a sesiones de práctica de voleibol de piso, así como en condiciones basales, en comparación con sujetos sedentarios. Metodología: Se llevó a cabo una revisión bibliográfica en las bases de datos PubMed, Scopus y ScienceDirect de estudios reportados hasta junio del 2021. Resultados: Diez estudios fueron incluidos, a partir, de los cuales, se observó que los voleibolistas exhiben niveles elevados de cortisol, testosterona y GH, posterior a sesiones de práctica. Los cambios en la concentración de IGF-1 al igual que el efecto del entrenamiento sobre la respuesta endocrina, mostraron resultados contradictorios. Conclusiones: Aun cuando el cortisol, la testosterona y la GH aumentan después de sesiones de juego, este incremento parece ser mayor en las primeras semanas de temporada de competencia para el cortisol y mayor en las últimas semanas, para la testosterona y la GH. Determinar si el entrenamiento regular logra modular la respuesta endocrina durante las sesiones de juego de voleibol de piso, permanece sujeto a futuras investigaciones.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ANTONELLI, G.; CAPPELLIN, E.; GATTI, R.; CHIAPPIN, S.; SPINELLA, P.; DE PALO, E. 2007. Measurement of free IGF-I saliva levels: Perspectives in the detection of GH/IGF axis in athletes. Clin. Biochem. 40(8):545-550.

https://doi.org/10.1016/j.clinbiochem.2007.01.014

BAUMANN, G. 2012. Growth hormone doping in sports: a critical review of use and detection strategies. Endocr. Rev. 33(2):155-186.

https://doi.org/10.1210/er.2011-1035

BERGAN-ROLLER, H.; SHERIDAN, M. 2018. The growth hormone signaling system: insights into coordinating the anabolic and catabolic actions of growth hormone. Gen. Comp. Endocrinol. 258:119-133.

https://doi.org/10.1016/j.ygcen.2017.07.028

BUDDE, H.; WEGNER, M.; SOYA, H.; VOELCKER-REHAGE, C.; MCMORRIS, T. 2016. Neuroscience of exercise: neuroplasticity and its behavioral consequences. Neural Plast. 2016:1-3.

https://doi.org/10.1155/2016/3643879

CACCESE, C.; JONES, S.; RAMESH, M.; YU, A.; BROSSARD-RACINE, M.; NGUYEN, T. 2021. Role of testosterone: cortisol ratio in age- and sex-specific cortico-hippocampal development and cognitive performance. J. Dev.Orig. Health Dis. 1-11.

https://doi.org/10.1017/S204017442100012X

CASTO, K.; EDWARDS, D. 2016. Testosterone, cortisol, and human competition. Horm. Behav. 82:21-37.

https://doi.org/10.1016/j.yhbeh.2016.04.004

CASTRO-SEPÚLVEDA, M.; CANCINO, J.; FERNÁNDEZ-VERDEJO, R.; PÉREZ-LUCO, C.; JANNAS-VELA, S.; RAMÍREZ-CAMPILLO, R.; DEL COSO, J.; ZBINDEN-FONCEA, H. 2019. Basal serum cortisol and testosterone/cortisol ratio are related to rate of Na+ lost during exercise in elite soccer players. Int J Sport Nutr Exe. 29(6):658-663.

https://doi.org/10.1123/ijsnem.2019-0129

CHAARI, H.; ZOUCH, M.; DENGUEZLI, M.; BOUAJINA, E.; ZAOUALLI, M.; TABKA, Z. 2012. A high level of volleyball practice enhances bone formation markers and hormones in prepubescent boys. Biol. Sport. 29(4):303-309.

CHRISTIANSEN, J.; DJURHUUS, C.; GRAVHOLT, C.; IVERSEN, P.; CHRISTIANSEN, J.; SCHMITZ, O.; WEEKE, J.; JORGENSEN, J.; MOLLER, N. 2007. Effects of cortisol on carbohydrate, lipid, and protein metabolism: studies of acute cortisol withdrawal in adrenocortical failure. J. Clin. Endocrinol. Metab. 92(9):3553-3559.

https://doi.org/10.1210/jc.2007-0445

CINTINEO, H.; ARENT, S. 2019. Anticipatory salivary cortisol and state anxiety before competition predict match outcome in division I collegiate wrestlers. J. Strength Cond. Res. 33(11):2905-2908.

https://doi.org/10.1519/JSC.0000000000003376

CLOSS, B.; BURKETT, C.; TROJAN, A.; BROWN, S.; MULCAHEY, M. 2020. Recovery after volleyball: a narrative review. Phys Sportsmed. 48(1):8-16.

https://doi.org/10.1080/00913847.2019.1632156

CONSTANTINI, N.; HACKNEY, A. 2013. Endocrinology of physical activity and sport. Humana Press, New York. 558p.

DELGADO, P.; MAYA-ROSERO, E.; FRANCO, M.; MONTOYA-OVIEDO, N.; GUATIBONZA, R.; MOSKUS, I. 2020. Testosterona y homicidio: aspectos neuroendocrinos de la agresión. Rev. Fac. Med. 68(2).

https://doi.org/10.15446/revfacmed.v68n2.73237

DUCLOS, M.; GOUARNE, C.; BONNEMAISON, D. 2003. Acute and chronic effects of exercise on tissue sensitivity to glucocorticoids. J. Appl. Physiol. 94(3):869-875.

https://doi.org/10.1152/japplphysiol.00108.2002

EDWARDS, D.; KURLANDER, L. 2010. Women’s intercollegiate volleyball and tennis: effects of warm-up, competition, and practice on saliva levels of cortisol and testosterone. Horm. Behavior. 58(4):606-613.

https://doi.org/10.1016/j.yhbeh.2010.06.015

ELIAKIM, A.; PORTAL, S.; ZADIK, Z.; MECKEL, Y.; NEMET, D. 2013. Training reduces catabolic and inflammatory response to a single practice in female volleyball players. J. Strength Cond. Res. 27(11):3110-3115.

https://doi.org/10.1519/JSC.0b013e31828d61d1

GÓMEZ-BANOY, N.; MOCKUS, I.; ARANZÁLEZ, L.; ZAMBRANO, J. 2016. Changes to circulating inflammatory cytokines in response to moderate exercise. J. Sport Med. Phys. Fit. 56(1-2):100-104.

HACKNEY, A.; LANE, A. 2015. Exercise and the regulation of endocrine hormones. Prog. Mol. Biol. Transl. Sci. 135:293-311.

https://doi.org/10.1016/bs.pmbts.2015.07.001

HANDELSMAN, D.; HIRSCHBERG, A.; BERMON, S. 2018. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr. Rev. 39(5):803-829.

https://doi.org/10.1210/er.2018-00020

HILL, E.; ZACK, E.; BATTAGLINI, C.; VIRU, M.; VIRU, A.; HACKNEY, A. 2008. Exercise and circulating cortisol levels: the intensity threshold effect. J. Endocrinol. Investig. 31(7):587-591.

https://doi.org/10.1007/BF03345606

HÓMEZ, J.; PÉREZ, O.; VERA, D. 2017. Caracterización de la jugadora de voleibol de Bogotá en talla, peso, alcance en remate y alcance en bloqueo en las categorías infantil, menores y juvenil. R. Actividad Fis. y Deporte. 3(1):71-79.

HORTA, T.; MAURÍCIO, G.; BARA, B.; FILHO, D.; COIMBRA, R.; MIRANDA, R.; WERNECK, Z. 2019. Training load, physical performance, biochemical markers, and psychological stress during a short preparatory period in Brazilian elite male volleyball players. J. Strength Cond. Res. 33(12):3392-3399.

https://doi.org/10.1519/JSC.0000000000002404

KANALEY, J. 2008. Growth hormone, arginine and exercise. Curr. Opin. Clin. Nutr. Metab. Care. 11(1):50-54.

https://doi.org/10.1097/MCO.0b013e3282f2b0ad

KELLY, D.; JONES, T. 2013. Testosterone: a metabolic hormone in health and disease. J. Endocrinol. 217(3):R25-45.

https://doi.org/10.1530/JOE-12-0455

KRAEMER, W.; RATAMESS, N.; HYMER, W.; NINDL, B.; FRAGALA, M. 2020. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise. Front. Endocrinol. 11:33.

https://doi.org/10.3389/fendo.2020.00033

MAZON, J.; GASTALDI, A.; DI SACCO, T.; COZZA, I.; DUTRA, S.; SOUZA, H. 2013. Effects of training periodization on cardiac autonomic modulation and endogenous stress markers in volleyball players: models of periodization and stress markers. Scand. J. Med. Sci. Spor. 23(1):114-120.

https://doi.org/10.1111/j.1600-0838.2011.01357.x

MCGEE, S.; HARGREAVES, M. 2020. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 16(9):495-505.

https://doi.org/10.1038/s41574-020-0377-1

MEEUSEN, R.; DUCLOS, M.; FOSTER, C.; FRY, A.; GLEESON, M.; NIEMAN, D.; RAGLIN, J.; RIETJENS, G.; STEINACKER, J.; URHAUSEN, A. 2013. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 45(1):186-205.

https://doi.org/10.1249/MSS.0b013e318279a10a

MOHER, D.; LIBERATI, A.; TETZLAFF, J.; ALTMAN, D. 2009. Reprint-Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. Phys. Ther. 89(9):873-880.

https://doi.org/10.1093/ptj/89.9.873

NEMET, D.; PORTAL, S.; ZADIK, Z.; PILTZ-BURTEIN, R.; ADLER-PORTAL, D.; MECKEL, Y.; ELIAKIM, A. 2012. Training increases anabolic response and reduces inflammatory response to a single practice in elite male adolescent volleyball players. J. Pediatr. Endocrinol. Metab. 25:(9-10).

https://doi.org/10.1515/jpem-2012-0094

NICHOLLS, A.; HOLT, R. 2016. Growth hormone and insulin-like growth factor-1. Front. Horm. Res. In: Lanfranco, F.; Strasburger, C.J. (eds.). Sports Endocrinology. 47:101-114.

https://doi.org/10.1159/000445173

NUNES-SILVA, A.; CARVALHO, G.; MASSOTE, D.; NEVES, L.; SALVIANO DE FARÍA, M.; SIMOES, E.; SILVA, A. 2017. Physical exercise and ace2-angiotensin-(1-7)-mas receptor axis of the renin angiotensin system. Protein Pept. Lett. 24(9).

https://doi.org/10.2174/0929866524666170728151401

PAOLUCCI, E.; LOUKOV, D.; BOWDISH, D.; HEISZ, J. 2018. Exercise reduces depression and inflammation but intensity matters. Biol. Psychol. 133:79-84.

https://doi.org/10.1016/j.biopsycho.2018.01.015

PAPACOSTA, E.; NASSIS, G.; GLEESON, M. 2016. Salivary hormones and anxiety in winners and losers of an international judo competition. J. Sports. Sci. 34(13):1281-1287.

https://doi.org/10.1080/02640414.2015.1111521

PEÑAILILLO, L.; ESCANILLA, F.; JURY, E.; CASTRO-SEPÚLVEDA, M.; DELDICQUE, L.; ZBINDEN-FONCEA, H. 2018. Differences in salivary hormones and perception of exertion in elite women and men volleyball players during tournament. J. Sport Med. Phys. Fit. 58(11):1688-1694.

https://doi.org/10.23736/S0022-4707.17.07681-2

PULOPULOS, M.; BAEKEN, C.; DE RAEDT, R. 2020. Cortisol response to stress: the role of expectancy and anticipatory stress regulation. Horm. Behav. 117:104587.

https://doi.org/10.1016/j.yhbeh.2019.104587

ROLI, L.; DE VINCENTIS, S.; ROCCHI, M.; TRENTI, T.; DE SANTIS, M.; SAVINO, G. 2018. Testosterone, cortisol, HGH, and IGF-1 levels in an Italian female elite volleyball team. Health Sci. Rep. 1(4):e32.

https://doi.org/10.1002/hsr2.32

SCHWARZ, L.; KINDERMANN, W. 1990. β-Endorphin, adrenocorticotropic hormone, cortisol and catecholamines during aerobic and anaerobic exercise. Eur. J. Appl. Physiol. 61(3–4):165-171.

https://doi.org/10.1007/BF00357593

SHAHANI, S.; BRAGA-BASARIA, M.; MAGGIO, M.; BASARIA, S. 2009. Androgens and erythropoiesis: past and present. J. Endocrinol. Investig. 32(8):704-716.

https://doi.org/10.1007/BF03345745

SIMONI, M.; HUHTANIEMI, I. 2017. Endocrinology of the testis and male reproduction. Springer International Publishing (Italy). 1364p.

https://doi.org/10.1007/978-3-319-44441-3

SOUGLIS, A.; BOGDANIS, G.; GIANNOPOULOU, I.; PAPADOPOULOS, CH.; APOSTOLIDIS, N. 2015. Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Res. Sports Med. 23(1):59-72.

https://doi.org/10.1080/15438627.2014.975814

TURGUT, G.; KAPTANOGLU, B.; TURGUT, S.; GENÇ, O.; TEKINTÜRK, S. 2003. Influence of acute exercise on urinary protein, creatinine, insulin-like growth factor-I (IGF-I) and IGF binding protein-3 concentrations in children. Tohoku J. Exp. Med. 201(3):165-170.

https://doi.org/10.1620/tjem.201.165

URHAUSEN, A.; HOLGER, G.; KINDERMANN, W. 1995. Blood hormones as markers of training stress and overtraining. Sports Med. 20(4):251-276.

https://doi.org/10.2165/00007256-199520040-00004

WOOD, R.; STANTON, S. 2012. Testosterone and sport: current perspectives. Horm. Behav. 61(1):147-155.

https://doi.org/10.1016/j.yhbeh.2011.09.010

ZOUHAL, H.; JACOB, C.; DELAMARCHE, P.; GRATAS-DELAMARCHE, A. 2008. Catecholamines and the effects of exercise, training and gender. Sports Med. 38(5):401-423.

https://doi.org/10.2165/00007256-200838050-00004

Citado por