LA LEUCINA EN EL DESEMPEÑO DEPORTIVO: EJERCICIOS AERÓBICOS Y ANAERÓBICOS
LEUCINE IN SPORTS PERFORMANCE: AEROBIC AND ANAEROBIC EXERCISES
Contenido principal del artículo
Resumen
La leucina es un aminoácido utilizado por las células para la síntesis de proteínas, juega un rol importante en el rendimiento físico de los deportistas, en la degradación del tejido muscular por el envejecimiento natural y el anabolismo muscular, por ende, es importante conocer las principales diferencias de su uso como suplemento dietético en los ejercicios aeróbicos y anaeróbicos, porque, estos demandan un desarrollo muscular y un suministro de energía diferente por parte de los sistemas energéticos. Se identificaron las diferencias en la síntesis muscular en los ejercicios aeróbicos y anaeróbicos con una dieta rica en leucina, el impacto en el rendimiento muscular tras una ingesta de leucina, límite del cuerpo humano en el metabolismo de la leucina y los efectos adversos de una ingesta incrementada del aminoácido antes mencionado. Se recopilaron diversos artículos de investigación que permitieron identificar esta información y se procedió a un análisis y comparación de resultados. Se concluyó que la leucina, como aminoácido esencial, debe ser suministrado a través de la dieta, y su consumo, debe ser paralelo a una dieta rica en proteínas. La leucina ofrece mejoras leves al rendimiento deportivo, pero, ayuda en la recuperación luego de ejercicios de gran intensidad, donde haya daño muscular, posiblemente limitando su efectividad como ayuda ergogénica, y por ende, su principal aplicación radica en el tratamiento de la diabetes tipo 2 y la sarcopenia. La leucina no tiene efectos adversos en su uso, pero se recomienda una dosis máxima de 550mg/kg diarios, principalmente como medida preventiva ante la falta de estudios a largo plazo de la exposición a la leucina en elevadas concentraciones.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Andersen, J., Klitgaard, H., and Saltin, B. (1994). Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 151: 135-142.
Costill, D., Daniels, J., Evans, W., Fink, W., Krahenbuhl, G., and Saltin, B. (1976). Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40: 149-154.
Jansson, E., Sjodin, B., and Tesch, P. (1978). Changes in muscle fibre type distribution in man after physical training. A sign of fibre type transformation? Acta Physiol Scand 104: 235-237.
Malisoux, L., Francaux, M., Nielens, H., and Theisen, D. (2006). Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 100: 771-779.
Nissen S, Sharp, R., Panton, L., Vukovich, M., Trappe, S., Fuller, J. (1945). Betahydroxy-beta-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J Nutr 2000; 130.
Pinheiro, C., Gerlinger-Romero, F., Guimarães-Ferreira, L., et al. Eur J Appl Physiol (2012). 112: 2531. doi:10.1007/s00421-011-2224-5.
Rosenthal, J., Angel, A., Farkas, J. (1974). Metabolic fate of leucine: a significant sterol precursor in adipose tissue and muscle. American Journal of Physiology - Legacy Content Feb 1974. 226 (2) 411-418.
Antonio, J., Peacock, C., Ellerbroek, A., Fromhoff, B., & Silver, T. (2014). The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition, 11(1), 19. https://doi.org/10.1186/1550-2783-11-19
Berton, R., Conceição, M., Libardi, C., Canevarolo, R., Gáspari, A., Chacon-Mikahil, M., Cavaglieri, C. (2017). Metabolic time-course response after resistance exercise: A metabolomics approach. Journal of Sports Sciences, 35(12). https://doi.org/10.1080/02640414.2016.1218035
Burd, N., Andrews, R., West, D., Little, J., Cochran, A., Hector, A., Phillips, S. (2012). Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. The Journal of Physiology, 590(2), 351–362. https://doi.org/10.1113/jphysiol.2011.221200
Burd, N., Mitchell, C., Churchward-Venne, T., & Phillips, S. (2012). Bigger weights may not beget bigger muscles: evidence from acute muscle protein synthetic responses after resistance exercise. Applied Physiology, Nutrition, and Metabolism, 37(3), 551–554. https://doi.org/10.1139/h2012-022
Campbell, B., Wilborn, C., La Bounty, P., & Wilson, J. (2012). Nutrient Timing for Resistance Exercise. Strength & Conditioning Journal (Allen Press), 34(4), 2–10 9p. https://doi.org/10.1519/SSC.0b013e3182558e16
Campos-Ferraz, P., Bozza, T., Nicastro, H., & Lancha, A. (2013). Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats. Nutrition, 29(11–12), 1388–1394. https://doi.org/10.1016/j.nut.2013.05.003
Churchward-Venne, T., Breen, L., Di Donato, D., Hector, A., Mitchell, C., Moore, D., Phillips, S. (2014). Leucine supplementation of a lowprotein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial1-3. American Journal of Clinical Nutrition, 99(2), 276–286. https://doi.org/10.3945/ajcn.113.068775
Churchward-Venne, T., Burd, N., & Phillips, S. (2012). Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutrition & Metabolism, 9(1), 40. https://doi.org/10.1186/1743-7075-9-40
Churchward-Venne, T., Burd, N., Mitchell, C., West, D., Philp, A., Marcotte, G., Phillips, S. (2012). Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. The Journal of Physiology, 590(11), 2751–2765. https://doi.org/10.1113/jphysiol.2012.228833
Cynober, L., Bier, D., Kadowaki, M., Morris, S., & Renwick, A. (2012). A proposal for an upper limit of leucine safe intake in healthy adults. Journal of Nutrition, 142(12), 2249S–2250S. https://doi.org/http://dx.doi.org/10.3945/jn.112.160853
Dickinson, J., Gundermann, D., Walker, D., Reidy, P., Borack, M., Drum, M., Rasmussen, B. (2014). Leucine-Enriched Amino Acid Ingestion after Resistance Exercise Prolongs Myofibrillar Protein Synthesis and Amino Acid Transporter Expression in Older Men 1 - 3. Journal of Nutrition, 144, 1694–1702. https://doi.org/10.3945/jn.114.198671.However
Fitschen, P., Wilson, G. J., Wilson, J. M., & Wilund, K. R. (2013). Efficacy of ??hydroxy-??-methylbutyrate supplementation in elderly and clinical populations. Nutrition, 29(1), 29–36. https://doi.org/10.1016/j.nut.2012.05.005
Garlick, P. (2005). The Role of Leucine in the Regulation of Protein Metabolism. The Journal of Nutrition, 135(6), 1553S–1556S. https://doi.org/135/6/1553S [pii]
Glynn, E., Fry, C., Drummond, M., Timmerman, K., Dhanani, S., Volpi, E., & Rasmussen, B. (2010). Excess Leucine Intake Enhances Muscle Anabolic Signaling but Not Net Protein Anabolism in Young Men and Women. Journal of Nutrition, 140(11), 1970–1976. https://doi.org/10.3945/jn.110.127647
Grissom, J., Lennon, O., Denis, R., Grace, N., Blake, C., Rexhepi, A., Pedersen, P. (2014). Journal of Exercise Physiology online. Journal of Exercise Physiology, 8(1), 11–25. https://doi.org/10.1519/JSC.0b013e3181874564
Herbert, A., & Junior, L. (2015). muscle atrophy ? A literature review, (April), 496– 507.
Imamura, W., Yoshimura, R., Takai, M., Yamamura, J., Kanamoto, R., & Kato, H. (2013). Adverse effects of excessive leucine intake depend on dietary protein intake: a transcriptomic analysis to identify useful biomarkers. Journal of Nutritional Science and Vitaminology, 59(1), 45–55. https://doi.org/10.3177/jnsv.59.45
Kirby, T., Triplett, N., Haines, T., Skinner, J., Fairbrother, K., & McBride, J. M. (2012). Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids, 42(5), 1987–1996. https://doi.org/10.1007/s00726-011-0928-9
Liang, C., Curry, B., Brown, P., & Zemel, M. (2014). Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. Journal of Nutrition and Metabolism, 2014. https://doi.org/10.1155/2014/239750
MacDougall, J., Gibala, M., Tarnopolsky, M., MacDonald, J., Interisano, S., & Yarasheski, K. (1995). The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol, 20(4), 480–486. https://doi.org/10.1139/h95-038
Manjarrez-Montes-de-Oca, R., Torres-Vaca, M., González-Gallego, J., & Alvear-Ordenes, I. (2015). El ??-hidroxi-??-metilbutirato (HMB) como suplemento nutricional (I): metabolismo y toxicidad. Nutricion Hospitalaria, 31(2), 590–596. https://doi.org/10.3305/nh.2015.31.2.8432
Melnik, B. (2012). Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World Journal of Diabetes, 3(3), 38. https://doi.org/10.4239/wjd.v3.i3.38
Metab Oseo Y Min, 10(2), 98–102. Retrieved from www.researchgate.net/...sarcopenia.../00b4952b1e4884ffb8000000.pdf%5Cn
Nelson, A., Phillips, S., Stellingwerff, T., Rezzi, S., Bruce, S., Breton, I., Rowlands, D. (2012). A protein-leucine supplement increases branchedchain amino acid and nitrogen turnover but not performance. Medicine and Science in Sports and Exercise, 44(1), 57–68. https://doi.org/10.1249/MSS.0b013e3182290371
Pasiakos, S., Lieberman, H., & McLellan, T. (2014). Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: A systematic review. Sports Medicine, 44(5), 655–670. https://doi.org/10.1007/s40279-013-0137-7
Pasiakos, S., McClung, H., McClung, J., Margolis, L., Andersen, N., Cloutier, G., Young, A. (2011). Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. American Journal of Clinical Nutrition, 94(3), 809–818. https://doi.org/10.3945/ajcn.111.017061
Pasiakos, S., McLellan, T., & Lieberman, H. (2015). The Effects of Protein Supplements on Muscle Mass, Strength, and Aerobic and Anaerobic Power in Healthy Adults: A Systematic Review. Sports Medicine, 45(1), 111–131. https://doi.org/10.1007/s40279-014-0242-2
Pencharz, P., Elango, R., & Ball, R. (2012). Determination of the Tolerable Upper Intake Level of Leucine in Adult Men 1 – 3, 3. https://doi.org/10.3945/jn.112.160259.The
Reitelseder, S., Agergaard, J., Doessing, S., Helmark, I. C., Schjerling, P., Van Hall, G., Holm, L. (2014). Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation. European Journal of Nutrition, 53(1), 321–333. https://doi.org/10.1007/s00394-013-0530-x
Robinson, E., Stout, J., Miramonti, A., Fukuda, D., Wang, R., Townsend, J., Hoffman, J. (2014). High-intensity interval training and βhydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds. Journal of the International Society of Sports Nutrition, 11(1), 16. https://doi.org/10.1186/1550-2783-11-16
Rowlands, D., Nelson, A., Phillips, S., Faulkner, J., Clarke, J., Burd, N., Stellingwerff, T. (2014). Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Medicine and Science in Sports and Exercise, 47(3), 547–555. https://doi.org/10.1249/MSS.0000000000000447
Schoenfeld, B., Aragon, A., & Krieger, J. (2013). The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. Journal of the International Society of Sports Nutrition, 10(1), 53. https://doi.org/10.1186/1550-2783-10-53
Spillane, M., Emerson, C., & Willoughby, D. (2012). The effects of 8 weeks of heavy resistance training and branched-chain amino acid supplementation on body composition and muscle performance. Nutrition and Health, 21(4), 263– 273. https://doi.org/10.1177/0260106013510999
Trabal, J., Forga, M., Leyes, P., Torres, F., Rubio, J., Prieto, E., & Farran-Codina, A. (2015). Effects of free leucine supplementation and resistance training on muscle strength and functional status in older adults: A randomized controlled trial. Clinical Interventions in Aging, 10, 713–723. https://doi.org/10.2147/CIA.S75271
Van Loon, L. (2012). Leucine as a pharmaconutrient in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 15(1), 71–77. https://doi.org/10.1097/MCO.0b013e32834d617a
Velázquez, C., Esther, M., & Camacho, I. (2012). Salud muscular y prevención de sarcopenia : el efecto de la proteína, leucina y β -hidroxi- β -metilbutirato. Rev
Williams, M. (2005). Dietary Supplements and Sports Performance: Amino Acids. Journal of the International Society of Sports Nutrition, 2(2), 63. https://doi.org/10.1186/1550-2783-2-2-63
Wilson, J., Loenneke, J., Jo, E., Wilson, G., Zourdos, M., & Kim, J. (2012). The Effects of Endurance, Strength, and Power Training on Muscle Fiber Type Shifting. Journal of Strength and Conditioning Research, 26(6), 1724–1729. https://doi.org/10.1519/JSC.0b013e318234eb6f
Wilson, J., Lowery, R., Joy, J., Walters, J., Baier, S., Fuller, J., Rathmacher, J. (2013). β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. British Journal of Nutrition, 110(3), 538–544. https://doi.org/10.1017/S0007114512005387
Wilson, J., Wilson, S., Loenneke, J., Wray, M., Norton, L., Campbell, B., Stout, J. (2012). Effects of Amino Acids and their Metabolites on Aerobic and Anaerobic Sports. Strength & Conditioning Journal, 34(4). Retrieved from http://journals.lww.com/nsca-scj/Fulltext/2012/08000/Effects_of_Amino_Acids_and_their_Metabolites_on.8.a spx
Yang, Y., Breen, L., Burd, N., Hector, A., Churchward-Venne, T., Josse, A., Phillips, S. (2012). Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. British Journal of Nutrition, 108(10), 1780–1788. https://doi.org/10.1017/S0007114511007422
Yonamine, C., Teixeira, S., Campello, R., Gerlinger-Romero, F., Rodrigues, C., Guimarães-Ferreira, L., Nunes, M. (2014). Beta hydroxy beta methylbutyrate supplementation impairs peripheral insulin sensitivity in healthy sedentary Wistar rats. Acta Physiologica, 212(1), 62–74. https://doi.org/10.1111/apha.12336