Medición de emisiones de metano en bovinos con analizador de gas infrarrojo y cromatografía de gases
Measurement of methane emissions in cattle with infrared gas analyzer and gas chromatography
Contenido principal del artículo
Descargas
Detalles del artículo
Referencias (VER)
BLAXTER, K.L.; CLAPPERTON, J.L. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19(4):511-522.
https://doi.org/10.1079/bjn19650046
CHUNTRAKORT, P.; OTSUKA, M.; HAYASHI, K.; TAKENAKA, A.; UDCHACHON, S.; SOMMART, K. 2014.The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw based diets. Livestock Science. 161(3):80-89.
GAVRILOVA, O.; LEIP, A.; DONG, H.; MACDONALD, J.D.; GOMEZ BRAVO, C.A.; AMON, B.; BARAHONA ROSALES, R.; DEL PRADO, A.; OYHANTÇABAL, W.; VAN DER WEERDEN, T.J.; WIDIAWATI, Y. 2019. Emissions from livestock and manure management. En: Calvo Buendia, E.; Tanabe, K.; Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyroshenko, Y.; Shermanau, P.; Federici, S. (Ed.). 2019 Refinement to the 2006 guidelines for National Greenhouse Gas Inventories. Agriculture, forestry and other land use. Geneve: IPCC. v. 4. cap. 10
GERBER, P.J.; STEINFELD, H.; HENDERSON, B.; MOTTET, A.; OPIO, C.; DIJKMAN, J.; FALCUCCI, A.; TEMPIO, G. 2013. Tackling Climate Change through Livestock–A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
GOOPY, J.P.; CHANG, C.; TOMKINS, N. 2016. A Comparison of Methodologies for Measuring Methane Emissions from Ruminants. In: Rosenstock, T., Rufino, M.; Butterbach-Bahl, K.; Wollenberg, L.; Richards, M. (eds). Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Springer, Cham. p.97-117.
HAQUE, M.N.; MADSEN, C.C. 2014. Estimation of methane emission using the CO2 method from dairy cows fed concentrate with different carbohydrate compositions in automatic milking system. Livestock Science. 164:57-66.
https://doi.org/10.1016/j.livsci.2014.03.004
HILL, J.; MCSWEENEY, C.; WRIGHT, A.D.G.; BISHOP-HURLEY, G.; KALANTAR-ZADEH, K. 2016. Measuring methane production from ruminants. Trends in Biotechnology. 34:26-35.
https://doi.org/10.1016/j.tibtech.2015.10.004
LASSEN, J.; LOVENDAHL, P.; MADSEN, J. 2012. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J. Dairy Science. 95:890-898.
https://doi.org/10.3168/jds.2011-4544
LOCKYER, D.R.; JARVIS, S.C. 1995. The measurement of methane losses from grazing animals. Environ Pollut. 90(3):383-390.
https://doi.org/10.1016/0269-7491(95)00009-g
MOLINA, I.C.; ANGARITA, E.A.; MAYORGA, O.L.; CHARÁ, J.; BARAHONA, R. 2016. Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livestock Science. 185:24‐29.
MURRAY, P.; CHADWICK, D.; NEWBOLD, C.; LOCKYER, D. 2007. Measurement of Methane from Grazing Animals - the Tunnel Method. In: Makkar, H.P., Vercoe, P.E. (eds) Measuring Methane Production From Ruminants. Springer, Dordrecht.
https://doi.org/10.1007/978-1-4020-6133-2_6
MURRAY, P.J.; MOSS, A.; LOCKYER, D.R.; JARVIS, S.C. 1999. A comparison of systems for measuring methane emissions from sheep. J. Agricultural Science. 133:439-444.
REY-SANCHEZ, C.; BOHRER, G.; SLATER, J.; LI, Y.F.; GRAU-ANDRES, R.; HAO, Y.; RICH, V.I.; DAVIES, G.M. 2019. The ratio of methanogens to methanotrophs and water-level dynamics drive methane exchange velocity in a temperate kettle-hole peat bog. Biogeosciences. 16:3207-3231.
https://doi.org/10.5194/bg-16-3207-2019
SAS Institute. 2003. User’s Guide: Statistics Version 9.1. SAS Inst. Inc., Cary, NC.
SHETTY, N.; DIFFORD, G.; LASSEN, J.; LØVENDAHL, P.; BUITENHUIS, A.J. 2017. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk. J. Dairy Science. 100:9052-9060.
https://doi.org/10.3168/jds.2017-13014
SMITH, P.; SMITH, J.U.; POWLSON, D.S.; MCGILL, W.B.; ARAH, J.R.M.; CHERTOV, O.G.; COLEMAN, K.; FRANKO, U.; FROLKING, S.; JENKINSON, D.S.; JENSEN, L.S.; KELLY, R.H.; KLEIN-GUNNEWIEK, H.; KOMAROV, A.S.; LI, C.; MOLINA, J.A.E.; MUELLER, T.; PARTON, W.J.; THORNELY, J.H.M.; WHITMORE, A.P. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma. 81:153-225.
https://doi.org/10.1016/S0016-7061(97)00087-6
STORM, I.M.L.; HELLWING, A.L.F.; NIELSEN, N.I.; MADSEN, J. 2012. Methods for Measuring and Estimating Methane Emission from Ruminants. Animals: An Open Access Journal from MDPI. 2(2):160-183.
http://doi.org/10.3390/ani2020160
SYPNIEWSKI, M.; STRABEL, T.; CIESLAK, A.; SZUMACHER-STRABEL, M.; PSZCZOLA, M. 2019. Technical note: Interchangeability and comparison of methane measurements in dairy cows with 2 noninvasive infrared systems. J. Dairy Science. 102(10):9512-9517.
https://doi org/10.3168/jds.2019-16258
TEDESCHI, L.O. 2006. Assessment of the adequacy of mathematical models. Agricultural Systems J. 89:225-247.
https://doi.org/10.1016/j.agsy.2005.11.004
THE INTERGOBERMENTAL PANEL ON CLIMATIC CHANGE IPCC. 2007. IPCC Emissions Factor Database. Disponible desde Internet en:
https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database (con acceso 13/08/2019).