Actividad promotora del crecimiento vegetal de cepas de Bacillus spp. en frijol (Phaseolus vulgaris)
Plant growth-promoting activity of Bacillus spp. strains in bean (Phaseolus vulgaris)
Contenido principal del artículo
Resumen
Los microorganismos promotores del crecimiento vegetal (PGPM) representan una alternativa ecológica y eficiente frente al uso excesivo de fertilizantes químicos en la agricultura convencional. Dentro de este grupo funcional, las especies del género Bacillus se destacan por su versatilidad fisiológica, capacidad de esporulación y producción de metabolitos bioactivos. Dada esta relevancia, el objetivo del presente estudio fue evaluar la actividad promotora del crecimiento de siete cepas nativas de Bacillus spp., aisladas de la rizosfera de Phaseolus vulgaris, cultivado bajo condiciones controladas. Las cepas fueron aisladas mediante tratamiento térmico, caracterizadas mediante pruebas bioquímicas y confirmadas taxonómicamente por secuenciación del gen 16S rRNA. Las especies identificadas incluyeron B. subtilis, B. pumilus, B. megaterium y Sporosarcina pasteurii. Se evaluaron parámetros funcionales clave, como la producción de ácido indolacético (AIA), la cinética de crecimiento bacteriano y la influencia sobre variables morfológicas de la planta. Las cepas B. pumilus (AVCM54) y S. pasteurii (ACM044) mostraron una alta producción de AIA (>1,8 µg·mL⁻¹), lo que se correlacionó con un mayor desarrollo vegetativo de las plantas tratadas, evidenciado en la altura, el diámetro del tallo y la biomasa seca aérea y radicular. Estos resultados sugieren que las cepas seleccionadas poseen mecanismos bioestimulantes asociados a la síntesis de fitohormonas y la mejora de la eficiencia fisiológica de la planta. En conjunto, el estudio respalda el uso potencial de Bacillus spp. como bioinoculantes para la formulación de biofertilizantes aplicables en sistemas agrícolas sostenibles, especialmente en regiones tropicales, que enfrentan desafíos productivos y ambientales.
Palabras clave:
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
- Sociedad académica
- Universidad de Ciencias Aplicadas UDCA
- Editorial
- Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Detalles del artículo
Referencias (VER)
AIJAZ, N.; ZAHEER, M.S.; HAMEED, A.; ASLAM, H.M.U.; ALAM, M.W.; RIAZ, H.; BARASARATHI, J.; AGHAYEVA, S.; BIBI, R.; RIAZ, M.W.; ALI, H.H.; MANOHARADAS, S.; MANZOOR, M.A.; REHMAN, S. 2024. Improving salinity tolerance in wheat plants via inoculation with Azospirillum brasilense and Bacillus subtilis for enhanced biomass, growth, and physiological process. Acta Physiologiae Plantarum. 46(11):103. https://doi.org/10.1007/s11738-024-03727-8 DOI: https://doi.org/10.1007/s11738-024-03727-8
AKINSEMOLU, A.A.; ONYEAKA, H.; ODION, S.; ADEBANJO, I. 2024. Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. Journal of Basic Microbiology. 64(6):e2300614. https://doi.org/10.1002/jobm.202300614 DOI: https://doi.org/10.1002/jobm.202300614
ALTSCHUL, S.F.; GISH, W.; MILLER, W.; MYERS, E.W.; LIPMAN, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology. 215(3):403-410. https://doi.org/10.1016/S0022-2836(05)80360-2 DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
ALVARADO IBÁÑEZ, J.C.; MOSTACERO LEÓN, J.; GUTIÉRREZ ARAUJO, M. 2021. Potencial biofertilizante de rizobacterias asociadas a cultivos amazónicos de importancia económica. REBIOL. 41(2):156-166. DOI: https://doi.org/10.17268/rebiol.2021.41.02.01
ARSLAN, M.; BULUT, S. 2023. The effects of Bacillus ssp. on germination and seedling growth of common bean (Phaseolus vulgaris). Current Trends in Natural Sciences. 12(23):160-166. https://doi.org/10.47068/ctns.2023.v12i23.017 DOI: https://doi.org/10.47068/ctns.2023.v12i23.017
BASAVARAJA, T.; TRIPATHI, A.; GURUMURTHY, S.; MAHADEVAIAH, C.; LAMICHANEY, A.; CHANDORA, R.; DEVINDRAPPA. 2024. Genomic-assisted breeding strategies for biotic stress in common bean: Progress and prospects. En: Parihar, A.K.; Bohra, A.; Lamichaney, A.; Mishra, R.; Varshney, R.K. (eds). Genomics-aided breeding strategies for biotic stress in grain legumes. Springer Nature Singapore. p.231-275. https://doi.org/10.1007/978-981-97-3917-2_8 DOI: https://doi.org/10.1007/978-981-97-3917-2_8
BASHAN, Y.; DE-BASHAN, L.E.; PRABHU, S.R.; HERNANDEZ, J.P. 2014. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil. 378:1-33. https://doi.org/10.1007/s11104-013-1956-x DOI: https://doi.org/10.1007/s11104-013-1956-x
BENSON, D.A.; CAVANAUGH, M.; CLARK, K.; KARSCH-MIZRACHI, I.; LIPMAN, D.J.; OSTELL, J.; SAYERS, E.W. 2013. GenBank. Nucleic Acids Research. 41(D1):D36-D42. https://doi.org/10.1093/nar/gks1195 DOI: https://doi.org/10.1093/nar/gks1195
CAPPUCCINO, J.G.; WELSH, C. 2020. Microbiology: A laboratory manual. 12 edición. Pearson. 561p.
CHANDRA, P.; KHOBRA, R.; SUNDHA, P.; SHARMA, R.K.; JASROTIA, P.; CHANDRA, A.; SINGH, D.P.; SINGH, G.P. 2021. Plant growth promoting Bacillus-based bio formulations improve wheat rhizosphere biological activity, nutrient uptake, and growth of the plant. Acta Physiologiae Plantarum. 43:139. https://doi.org/10.1007/s11738-021-03310-5 DOI: https://doi.org/10.1007/s11738-021-03310-5
DIMOPOULOU, M.; VARELTZIS, P.; GORTZI, O. 2024. A systematic review of the twelve most popular bean varieties, highlighting their potential as functional foods based on the health benefits derived from their nutritional profiles, focused on non-communicable diseases. Applied Sciences. 14(22):10215. https://doi.org/10.3390/app142210215 DOI: https://doi.org/10.3390/app142210215
FIUSA ARAÚJO, F.F.; BRANDÃO, R.M.; MEIRELES BARGUIL, B.; DAS GRAÇAS CARDOSO, M.; PASQUAL, M.; LARA SILVA REZENDE, R.A.; ALVES PEREIRA, M.M.; TEIXEIRA BUTTRÓS, V.H.; DÓRIA, J. 2020. Plant growth-promoting bacteria improve growth and modify essential oil in rose (Rosa hybrida L.) cv. Black Prince. Frontiers in Sustainable Food Systems. 4:606827. Frontiers Media. https://doi.org/10.3389/fsufs.2020.606827 DOI: https://doi.org/10.3389/fsufs.2020.606827
GORDON, S.A.; WEBER, R.P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology. 26(1):192-195. https://doi.org/10.1104/pp.26.1.192 DOI: https://doi.org/10.1104/pp.26.1.192
GOUDA, S.; KERRY, R.G.; DAS, G.; PARAMITHIOTIS, S.; SHIN, H.S.; PATRA, J.K. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research. 206:131-140. https://doi.org/10.1016/j.micres.2017.08.016 DOI: https://doi.org/10.1016/j.micres.2017.08.016
GUERRERO, M.G.G. 2023. Sporulation, structure assembly, and germination in the soil bacterium Bacillus thuringiensis: Survival and success in the environment and the insect host. Microbiology Research.14(2):466-491. https://doi.org/10.3390/microbiolres14020035 DOI: https://doi.org/10.3390/microbiolres14020035
GUPTA, S.; YILDIRIM, S.; ANDRIKOPOULOS, B.; WILLE, U.; ROESSNER, U. 2023. Deciphering the interactions in the root–soil nexus caused by urease and nitrification inhibitors: A review. Agronomy. 13(6):1603. https://doi.org/10.3390/agronomy13061603 DOI: https://doi.org/10.3390/agronomy13061603
HERRMANN, X.; YBARRA, A.; SCHWARTZ, M. 2013. Limitaciones tecnológicas y dependencia de bioinsumos importados en condiciones agroecológicas específicas. Revista Internacional de Agroecología y Sustentabilidad. 7(2):45-58.
HOSSAIN, M.A.; HOSSAIN, M.S.; AKTER, M. 2023. Challenges faced by plant growth-promoting bacteria in field-level applications and suggestions to overcome the barriers. Physiological and Molecular Plant Pathology. 126:102029. https://doi.org/10.1016/j.pmpp.2023.102029 DOI: https://doi.org/10.1016/j.pmpp.2023.102029
HSIEH, H.Y.; STEWART, G.C. 2023. Does environmental replication contribute to Bacillus anthracis spore persistence and infectivity in soil? Research in Microbiology. 174(5):104052. https://doi.org/10.1016/j.resmic.2023.104052 DOI: https://doi.org/10.1016/j.resmic.2023.104052
HUNGRIA, M.; CAMPO, R.J.; SOUZA, E.M.; PEDROSA, F.O. 2010. Inoculation with selected strains of Azospirillum brasilense and Rhizobium tropici increases yields of common bean and maize in Brazil. Plant and Soil. 331(1-2):413–425. https://doi.org/10.1007/s11104-009-0262-0 DOI: https://doi.org/10.1007/s11104-009-0262-0
ISLAM, T.; RABBEE, M.F.; CHOI, J.; BAEK, K.H. 2022. Biosynthesis, molecular regulation, and application of bacilysin produced by Bacillus species. Metabolites. 12(5):397. https://doi.org/10.3390/metabo12050397 DOI: https://doi.org/10.3390/metabo12050397
KHAN, M.A.; BANO, A.; KHAN, A.L. 2020. Phytohormones producing plant growth-promoting rhizobacteria: Mechanisms and their potential in sustainable agriculture. Plant Growth Regulation. 91(3):453-470.
KHIANGTE, L.; LALFAKZUALA, R. 2021. Effects of heavy metals on phosphatase enzyme activity and indole-3-acetic acid (IAA) production of phosphate solubilizing bacteria. Geomicrobiology Journal. 38(6):494–503. https://doi.org/10.1080/01490451.2021.1894271 DOI: https://doi.org/10.1080/01490451.2021.1894271
KUMAR, A.; PRAKASH, A.; JOHRI, B.N. 2012. Bacillus as PGPR in crop ecosystem. En: Maheshwari, D.K. Bacteria in agrobiology: Crop ecosystems. Springer. p.37-59. https://doi.org/10.1007/978-3-642-18357-7_2 DOI: https://doi.org/10.1007/978-3-642-18357-7_2
LAMBA, S.; MUNDANDA MUTHAPPA, D.; FANNING, S.; SCANNELL, A. G. M. 2022. Sporulation and biofilms as survival mechanisms of Bacillus species in low-moisture food production environments. Foodborne Pathogens and Disease. 19(7):448–462. https://doi.org/10.1089/fpd.2022.0006 DOI: https://doi.org/10.1089/fpd.2022.0006
LASTOCHKINA, O.; ALINIAEIFARD, S.; GARSHINA, D.; GARIPOVA, S.; PUSENKOVA, L.; ALLAGULOVA, C.; FEDOROVA, K.; BAYMIEV, A.; KORYAKOV, I.; SOBHANI, M. 2021. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. Journal of Plant Physiology. 263:153462. https://doi.org/10.1016/j.jplph.2021.153462 DOI: https://doi.org/10.1016/j.jplph.2021.153462
LIN, Y.; ALSTRUP, M.; PANG, J.K.Y.; MARÓTI, G.; ER-RAFIK, M.; TOURASSE, N.; ØKSTAD, O.A.; KOVÁCS, Á.T. 2021. Adaptation of Bacillus thuringiensis to plant colonization affects differentiation and toxicity. mSystems. 6(5):e0086421. https://doi.org/10.1128/mSystems.00864-21 DOI: https://doi.org/10.1128/msystems.00864-21
LOGAN, N.A.; DE VOS, P. 2015. Bacillus. En: Whitman, W.B. Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley. p.1-163. https://doi.org/10.1002/9781118960608.gbm00530 DOI: https://doi.org/10.1002/9781118960608.gbm00530
LÓPEZ, A.C.; ALIPPI, A.M. 2007. Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. International Journal of Food Microbiology. 117(2):175-184. https://doi.org/10.1016/j.ijfoodmicro.2007.03.007 DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.03.007
MADIGAN, M.T.; BENDER, K.S.; BUCKLEY, D.H.; SATTLEY, W.M. STAHL, D.A. 2021. Brock Biology of Microorganisms. 16 edición. Pearson Education. 994p.
MAGOTRA, S.; NEGI, N.P.; KUMAR, H. 2024. Co-shaping and co-evolution of microbial biodiversity: Study for identification of potential plant growth promoting microbes. En: Kaur, S.; Dwibedi, V.; Sahu, P.K. Metabolomics, Proteomics and Gene Editing Approaches in Biofertilizer Industry. Springer Nature Singapore. p.261-281. https://doi.org/10.1007/978-981-97-2910-4_14 DOI: https://doi.org/10.1007/978-981-97-2910-4_14
MAHESHWARI, D.K.; DHEEMAN, S.; AGARWAL, M. 2015. Phytohormone-producing PGPR for sustainable agriculture. En: Maheshwari, D.K. Bacteria in agrobiology: Crop productivity. Springer. p.159-182. https://doi.org/10.1007/978-3-662-45795-5_7 DOI: https://doi.org/10.1007/978-3-319-24654-3_7
MAITRA, P.; HRYNKIEWICZ, K.; SZUBA, A.; JAGODZIŃSKI, A.M.; AL-RASHID, J.; MANDAL, D.; MUCHA, J. 2024. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems. Frontiers in Plant Science. 15:1344205. https://doi.org/10.3389/fpls.2024.1344205 DOI: https://doi.org/10.3389/fpls.2024.1344205
MAWARDA, P.C.; MALLON, C.A.; LE ROUX, X.; VAN ELSAS, J.D.; SALLES, J.F. 2022. Interactions between bacterial inoculants and native soil bacterial community: The case of spore-forming Bacillus spp. FEMS Microbiology Ecology. 98(12):fiac127. https://doi.org/10.1093/femsec/fiac127 DOI: https://doi.org/10.1093/femsec/fiac127
MAŽYLYTĖ, R.; KAZIŪNIENÈ, J.; OROLA, L.; VALKOVSKA, V.; LASTAUSKIENÈ, E.; GEGECKAS, A. 2022. Phosphate solubilizing microorganism Bacillus sp. MVY-004 and its significance for biomineral fertilizers’ development in agrobiotechnology. Biology. 11(2):254. http://dx.doi.org/10.3390/biology11020254 DOI: https://doi.org/10.3390/biology11020254
MIETHKE, M.; MARAHIEL, M. A. 2007. Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews. 71(3):413-451. https://doi.org/10.1128/MMBR.00012-07 DOI: https://doi.org/10.1128/MMBR.00012-07
NCHANJI, E.B.; AGEYO, O.C. 2021. Do common beans (Phaseolus vulgaris L.) promote good health in humans? A systematic review and meta-analysis of clinical and randomized controlled trials. Nutrients. 13(11):3701. https://doi.org/10.3390/nu13113701 DOI: https://doi.org/10.3390/nu13113701
PAN, L.; CAI, B. 2023. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms. 11(12):2904. https://doi.org/10.3390/microorganisms11122904 DOI: https://doi.org/10.3390/microorganisms11122904
PATTEN, C.L.; GLICK, B.R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology. 68(8):3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002 DOI: https://doi.org/10.1128/AEM.68.8.3795-3801.2002
PETROVIĆ, M.; JANAKIEV, T.; GRBIĆ, M.L.; UNKOVIĆ, N.; STEVIĆ, T.; VUKIĆEVIĆ, S.; DIMKIĆ, I. 2023. Insights into endophytic and rhizospheric bacteria of five sugar beet hybrids in terms of their diversity, plant-growth promoting, and biocontrol properties. Microbial Ecology. 87:19. https://doi.org/10.1007/s00248-023-02329-0 DOI: https://doi.org/10.1007/s00248-023-02329-0
POVEDA, J.; GONZÁLEZ-ANDRÉS, F. 2021. Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology. 105(23):8629-8645. https://doi.org/10.1007/s00253-021-11492-8 DOI: https://doi.org/10.1007/s00253-021-11492-8
ROCHA, R.; LOPES, T.; FIDALGO, C.; ALVES, A.; CARDOSO, P.; FIGUEIRA, E. 2022. Bacteria associated with the roots of common bean (Phaseolus vulgaris L.) at different development stages: Diversity and plant growth promotion. Microorganisms. 11(1):57. https://doi.org/10.3390/microorganisms11010057 DOI: https://doi.org/10.3390/microorganisms11010057
SANTOYO, G.; HERNÁNDEZ-PACHECO, C.; HERNÁNDEZ-SALMERÓN, J.; HERNÁNDEZ-LEÓN, R. 2017. The role of abiotic factors modulating the plant–microbe–soil interactions: Toward sustainable agriculture. A review. Spanish Journal of Agricultural Research. 15(1):e03R01. http://dx.doi.org/10.5424/sjar/2017151-9990 DOI: https://doi.org/10.5424/sjar/2017151-9990
SOUSA, S.M.; DE OLIVEIRA, C.A.; ANDRADE, D.L.; DE CARVALHO, C.G.; RIBEIRO, V.P.; PASTINA, M.M.; MARRIEL, I.E.; DE PAULA LANA, U.G.; GOMES, E.A. 2021. Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. Journal of Plant Growth Regulation. 40(2):867-877. https://doi.org/10.1007/s00344-020-10146-9 DOI: https://doi.org/10.1007/s00344-020-10146-9
SPAEPEN, S.; VANDERLEYDEN, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology. 3(4):a001438. https://doi.org/10.1101/cshperspect.a001438 DOI: https://doi.org/10.1101/cshperspect.a001438
SPAEPEN, S.; VANDERLEYDEN, J.; REMANS, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews. 31(4):425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x DOI: https://doi.org/10.1111/j.1574-6976.2007.00072.x
SULEMAN, M.; YASMIN, S.; RASUL, M.; YAHYA, M.; ATTA, B.M.; MIRZA M.S. 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS One. 13:e0204408. https://doi.org/10.1371/journal.pone.0204408 DOI: https://doi.org/10.1371/journal.pone.0204408
UEBERSAX, M.A.; CICHY, K.A.; GOMEZ, F.E.; PORCH, T. G.; HEITHOLT, J.; OSORNO, J.M.; KAMFWA, K.; SNAPP, S.S.; BALES, S. 2022. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security-A review. Legume Science. 5(1):e155. https://doi.org/10.1002/leg3.155 DOI: https://doi.org/10.1002/leg3.155
VESSEY, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255(2):571-586. https://doi.org/10.1023/A:1026037216893 DOI: https://doi.org/10.1023/A:1026037216893
WANG, J.; FU, P.; HE, X.; LIU, Y.; ZUO, Y.; WEI, Z.; WANG, Y.; YANG, Y.; LI, C.; SHEN, X.; ZHU, L. 2025. Fur-regulated urease contributes to the environmental adaptation of Yersinia pseudotuberculosis. Microbiology Spectrum. 13(4):e0275624. https://doi.org/10.1128/spectrum.02756-24 DOI: https://doi.org/10.1128/spectrum.02756-24
WEISBURG, W.G.; BARNS, S.M.; PELLETIER, D.A.; LANE, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991 DOI: https://doi.org/10.1128/jb.173.2.697-703.1991
XIA, X.; WEI, Q.; WU, H.; CHEN, X.; XIAO, C.; YE, Y.; LIU, C.; YU, H.; GUO, Y.; SUN, W.; LIU, W. 2024. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot. Microbiome. 12:156. https://doi.org/10.1186/s40168-024-01887-w DOI: https://doi.org/10.1186/s40168-024-01887-w
YANG, H.; QU, J.; ZOU, W.; SHEN, W.; CHEN, X. 2021. An overview and future prospects of recombinant protein production in Bacillus subtilis. Applied Microbiology and Biotechnology. 105(18):6607-6626. https://doi.org/10.1007/s00253-021-11533-2 DOI: https://doi.org/10.1007/s00253-021-11533-2
ZAPATA-SIFUENTES, C.; HERNANDEZ-MONTIEL, L.G.; SAENZ-MATA, J.; FORTIS-HERNANDEZ, M.; BLANCO-CONTRERAS, E.; BLANCO-CONTRERAS, E.; CHIQUITO-CONTRERAS, R.G.; PRECIADO-RANGEL, P. 2022. Plant growth-promoting rhizobacteria improve growth and fruit quality of cucumber under greenhouse conditions. Plants. 11(12):1612. https://doi.org/10.3390/plants11121612 DOI: https://doi.org/10.3390/plants11121612