Influencia del ángulo de iluminación solar y la altura de la toma de la imagen multiespectral sobre la estimación de biomasa de pasto kikuyo

Influence of height and zenith angle of multispectral images on the estimation of kikuyo grass biomass

Contenido principal del artículo

Resumen

El objetivo de este estudio fue analizar la influencia del ángulo cenital de iluminación solar (mañana, mediodía y tarde) y la distancia (entre 10 y 50m) de imágenes multiespectrales de praderas de kikuyo, para la estimación de biomasa. Se capturaron datos espectrales de 40 muestras y se les calculó el índice de vegetación normalizada (NDVI) y la biomasa del forraje de las áreas fotografiadas. La relación de la biomasa con el NDVi, se hizo mediante modelos aditivos generalizados. Se encontró que es posible predecir la cantidad de biomasa con imágenes tomadas al mediodía y las alturas de vuelo analizadas (con R2 =0,99), indicando que el monitoreo de praderas puede incorporar información de sensores con bandas de rojo e infrarrojo cercano, tomadas entre las 12:00m y 1:00pm.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

BACH, J.; FRANCH, J. 2004. La enseñanza del Sistema Sol-Tierra desde la perspectiva de las ideas previas. Enseñ. cienc. Tierra. 12(3):302-312.

BARRACHINA, J.; CRISTOBAL, R.; TULLA, P.; ANTONI, F. 2010. Los recursos ganaderos en los sistemas extensivos de la montaña Pirenaica Catalana: aproximación al cálculo de la producción de biomasa herbácea mediante el uso de la teledetección. Ser. Geogr. 16:35-49.

BIVAND, R.; ROWLINGSON, B. 2016. rgdal: Bindings for the Geospatial Data Abstraction Library. R package version 1.2-5.

BLANCO, E.; BONET, J.A.; EIZAGUIRRE, M. 2009. Uso de imágenes satélite Landsat para la detección de rodales de Pinus nigra Arn y Pinus sylvestris L. afectados por escolítidos. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Invest. Agrar. Sist. Recur. For. 18:264-275.

BOLAÑOS, G.; MARTÍN, A.; PAZ, P.F. 2010. Modelación general de los efectos de la geometría de iluminación-visión en la reflectancia de pastizales. Rev. Mex. Cienc. Pecuarias. 1(4):349-361.

CÁCERES, J.D. 2016. Análisis del comportamiento temporal de la biomasa en pastos del Departamento de Olancho en el contexto del cambio global - fase II. Ciencias Espaciales. 7(1):97-114.

CAMACHO DE COCA, F.; GARCÍA-HARO, F.J.; GILABERT, M.A.; MELIÁ, J. 2002. La anisotropía de la BRDF: Una nueva signatura de las cubiertas vegetales. Rev. Teledetec. 18:29-46.

CHRISTENSEN, L.; COUGHENOUR, M.B.; ELLIS, J.E.; CHEN, Z. 2003. Sustainability of Inner Mongolian grasslands: application of the Savanna model. J. Range Managem. 56:319-327. http://doi.org/10.2307/4004034

ESCRIBANO RODRÍGUEZ, J.A.; HERNÁNDEZ DÍAZ-AMBRIONA, C.G. 2013. Estimación de la producción de pastos en Dehesas por índices de vegetación. En: Memorias Congreso: Los pastos: nuevos retos, nuevas oportunidades Badajoz, España. p.465-472.

GAUSMAN, H.W.; ALLEN, W.A.; WIEGAND, C.L.; ESCOBAR, D.E.; RODRIGUEZ, R.; RICHARDSON, A.J. 1973. The leaf mesophylls of twenty crops, their light spectra, and optical and geometrical parameters. USDA. Washington, D.C. Technical Bulletin. 1465. 68p.

GAUSMAN, H.W. 1977. Reflectance of leaf components. Remote Sensing of Environment. 6(1):1-9. https://doi.org/10.1016/0034-4257(77)90015-3

GILABERT, M.A.; GONZÁLEZ-PIQUERAS, J.; GARCÍA-HARO, J. 1997. Acerca de los índices de vegetación.Rev. Teledetec. 8:10-17.

GUYOT, G. 1980. Analysis of factors acting on the variability of spectral signatures of natural surfaces. In Proceedings International Symposium I.S.P. Hamburg. International Archives Photogrammetry 22:382-393.

GUYOT, G. 1984. Caractérisation spectrale des couverts végétaux dans le visible et le proche infrarouge, application a la télédétection. Bull. Soc. Franc. Photogram. et Télédétection. 95:5-22.

GUYOT, G. 1990. Optical properties of vegetation canopies. In: Steven, M D.; Clark, J.A. (eds). Application of Remote Sensing in Agriculture. Ed. Butterworths (Inglaterra). p.19-44.

HIJMANS, R.J. 2016. Raster: Geographic Data Analysis and Modeling. R package version 2.5-8.

KIMES, D.S. 1983. Dynamics of directional reflectance factor distributions for vegetation canopies. Appl. Opt. 22:1264-1272.

MALENOVSKÝ, Z.; ROTT, H.; CIHLAR, J.; SCHAEPMAN, M.E.; GARCIA-SANTOS, G.; FERNANDES, R.; BERGER, M. 2012. Sentinels for Science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Sentinels for science. 120:91-101. https://doi.org/10.1016/j.rse.2011.09.026

MEER, F.; JONG, S. 2001. Imaging Spectrometry. Remote Sensing and Digital Image Processing. Kluwe Academic Publishers. 4:111-197.

MENESES-TOVAR, C. 2011. El índice normalizado diferencial de la vegetación como indicador de la degradación del bosque. Unasylva. 238 62:39-46.

MUTANGA, O.; SKIDMORE, A.K. 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 25:3999-4014.

R CORE TEAM. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

ROUSE, J.W.; HAAS, R.H.; SCHELL, J.A.; DEERING, D.W. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS, Third ERTS Symposium (Washington, DC: NASA). p.309-317.

ROY, D.P.; WULDER, M.A.; LOVELAND, T.R.; WOODCOCK.; C.E.; ALLEN, R.G.; ANDERSON, M.C.; HELDER, D.; IRONS, J.R.; JOHNSON, D.M.; KENNEDY, R.; SCAMBOS, T.A.; SCHAAF, C.B.; SCHOTT, J.R.; SHENG, Y.; VERMOTE, E.F.; BELWARD, A.S.; BINDSCHADLER, R.; COHEN, W.B.; GAO, F.; HIPPLE, J.D.; HOSTERT, P.; HUNTINGTON, J.; JUSTICE, C.O.; KILIC, A.; KOVALSKYY, V.; LEE, Z.P.; LYMBURNER, L.; MASEK, J.G.; MCCORKEL, J.; SHUAI, Y.; TREZZA, R.; VOGELMANN, J.; WYNNE, R.H.; ZHU, Z. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment. 145:154-172.

SCHNETZLER, C.C. 1981. Effect of sun and sensor geometry, canopy structure and density, and atmospheric condition on the spectral response of vegetation, with particular emphasis on accross-track pointing. In Proceedings International Colloguium Spectral Signatures of Objects in Remote Sensing. Avignon, France. 8-11 Sept. Les Collogues de VINRA. 5:509-520.

STEADMAN, R.G. 1984. A universal Scale of apparent temperature. J Clim. 23:1674-687.

TUCKER, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Rev. Teledetec. 8(2):127-150.

VERCHER, A.; CAMACHO DE COCA, F.; MELIÁ, J. 2004. Influencia de la geometría de adquisición en el NDVI. Rev. Teledetec. 21:95-99.

WOOD, S. 2017. Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL.

Citado por

Artículos similares

<< < 18 19 20 21 22 23 24 25 26 27 > >> 

También puede {advancedSearchLink} para este artículo.

Datos de la Publicación

Métrica
Éste artículo
Otros artículos
Pares Evaluadores 
0
2.4

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Éste artículo
Otros artículos
Datos de Investigación 
No
16%
Financiación externa 
No
32%
Conflicto de Intereses 
N/D
11%
Métrica
Para esta revista
Otras Revistas
Tasa de aceptación 
16%
33%
Tiempo publicación (días) 
25
145
Editor y consejo editorial:
Perfiles
Institución responsable 
Universidad de Ciencias Aplicadas UDCA
Editora: 
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A