Producción de xilitol a partir de hidrolizados de raquis de palma por Candida tropicalis: optimización de las condiciones de fermentación

Xylitol production from hydrolyzed oil palm empty fruit bunch by Candida tropicalis: optimization of fermentation conditions

Contenido principal del artículo

Katherine Manjarres-Pinzon
Niza Cristina Otero-Guzmán
Eduardo Rodríguez-Sandoval
Guillermo Correa-Londoño

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

CHENG, K.; ZHANG, J.; LING, H.; PING, W.; HUANG, W.; GE, J.; XU, J. 2009. Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J (Paises Bajos). 43(2):203-207.

https://doi.org/10.1016/j.bej.2008.09.012

LING, H.; CHENG, K.; GE, J.; PING, W. 2011.Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnol. (Paises Bajos). 28(6):673-678.

https://doi.org/10.1016/j.nbt.2010.05.004

LORLIAM, W.; AKARACHARANYA, A.; KRAJANGSANG, S.; TOLIENG, V.; TANASUPAWAT, S. 2017. Optimization of xylitol production by Candida tropicalis A26. Chiang Mai J. Sci. (Tailandia). 44(1):50-58.

MANJARRES-PINZÓN, K.; ARIAS-ZABALA, M.; CORREA-LONDONO, G.; RODRIGUEZ-SANDOVAL, E. 2017. Xylose recovery from dilute-acid hydrolysis of oil palm (Elaeis guineensis) empty fruit bunches for xylitol production. African J. Biotechnol. (Nigeria). 16(41):19972008.

https://doi.org/10.5897/ajb2017.16214

MANJARRES-PINZÓN, K.; ARIAS-ZABALA, M.; MOLINA-RAMÍREZ, Y.; BETANCUR-NIETO, M.; RODRÍGUEZ-SANDOVAL, E. 2016. Producción de xilitol por Candida guilliermondii a partir de fermentación de residuos de palma de aceite. Rev. U.D.C.A Act. & Div. Cient. (Colombia). 19(2):403-409.

https://doi.org/10.31910/rudca.v19.n2.2016.94

MUSSATTO, S.; ROBERTO, I. 2008. Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem. (Reino Unido). 43(5):540-546.

https://doi.org/10.1016/j.procbio.2008.01.013

PING, Y.; LING, H.; SONG, G.; GE, J. 2013. Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem. Eng. J. (Paises Bajos). 75:86-91.

https://doi.org/10.1016/j.bej.2013.03.022

SAMPAIO, F.; FARIA, J.; SILVA, G.; GONÇALVES, R.; PITANGUI, C.; CASAZZA, A.; ARNI, S.; CONVERTI, A. 2017. Comparison of response surface methodology and artificial neural network for modeling xylose-to-xylitol bioconversion. Chem. Eng. Technol. (Alemania). 40(1):122-129.

https://doi.org/10.1002/ceat.201600066

SILVA, C.; ROBERTO, I. 2001. Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Process Biochem. (Reino Unido). 36(11):1119-1124.

https://doi.org/10.1016/S0032-9592(01)00153-4

YEWALE, T.; PANCHWAGH, S.; SAWALE, S.; JAIN, R.; DHAMOLE, P. 2017. Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech. (Suiza). 7(1):1-9.

https://doi.org/10.1007/s13205-017-0700-2

XU, L.; LIU, L.; LI, S.; ZHENG, W.; CUI, Y.; LIU, R.; SUN, W. 2019. Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech. (India). 21(2):341-347.

https://doi.org/10.1007/s12355-018-0650-y

Citado por