Obtención de celulasas bacterianas usando residuos orgánicos generados en plazas de mercado

Bacterial cellulases obtention from organic wastes generated in marketplaces

Contenido principal del artículo

Resumen

Los residuos agrícolas son una fuente de celulosa que puede ser aprovechada para producir enzimas hidrolíticas, como las celulasas, mediante acción microbiana. Estas celulasas son utilizadas en procesos extractivos de biomoléculas, en la producción de biogás, en la industria textil, detergente, alimentaria y del papel. El propósito del estudio es la obtención de celulasas bacterianas utilizando residuos orgánicos, generados en plazas de mercado. Se realizaron dos medios de cultivo (A1 y A2), a partir de ameros de mazorca y cáscaras de leguminosas, ajustando el pH del medio A1 a 7,0 y el de A2 a 5,0. Los medios fueron fermentados por 75 horas, mediante la cepa bacteriana C6M2, aislada de residuos de plazas de mercado, monitoreando la actividad enzimática, la concentración de azúcares reductores y la celulosa residual. La máxima actividad celulolítica se logró a las 56 horas de fermentación en A1 y a las 32 horas, en A2. El extracto enzimático se precipitó, dializó y ultrafiltró, obteniendo una actividad final de 9,07 ± 0,48 U/mL. Los ameros y las cáscaras de leguminosa se pueden aprovechar como sustratos en la producción de celulasas, con posibles aplicaciones en procesos donde requieran bajos grados de pureza.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

AKPINAR, M.; UREK, R. 2017. Peach and cherry agroindustrial wastes: new and economic sources for the production of lignocellulolytic enzymes. Acta chimica Slovenica. 64:422-430. https://doi.org/10.17344/acsi.2017.3265 DOI: https://doi.org/10.17344/acsi.2017.3265

BALA KUMARAN, M.; KALAICHELVAN, P.; SANTHI, R. 2015. Exploitation of agro-industrial wastes as substrates for cellulase production by bacillus licheniformis MTCC 429. Microbiology Journal. 5(2):36-42. https://doi.org/10.3923/mj.2015.36.42 DOI: https://doi.org/10.3923/mj.2015.36.42

BANERJEE, S.; KANTI MAITI, T.; NARAYAN ROY, R. 2020. Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Annals of Microbiology. 70(28):1-16. https://doi.org/10.1186/s13213-020-01569-6 DOI: https://doi.org/10.1186/s13213-020-01569-6

CARRILLO-NIEVES, D.; ROSTRO ALANÍS, M.; DE LA CRUZ QUIROZ, R.; RUIZ, H.; IQBAL, H.; PARRA-SALDÍVAR, R. 2019. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews. 102:63-74. https://doi.org/10.1016/j.rser.2018.11.031 DOI: https://doi.org/10.1016/j.rser.2018.11.031

CIVELEK YORUKLU, H.; KORKMAZ, E.; MANAV DEMIR, N.; OZKAYA, B.; DEMIR, A. 2018. The impact of pretreatment and inoculum to substrate ratio on methane potential of organic wastes from various origins. Journal of Material Cycles and Waste Management. 20:800-809. https://doi.org/10.1007/s10163-017-0641-1 DOI: https://doi.org/10.1007/s10163-017-0641-1

DAS, N.G.; HUQUE, K.S.; AMANULLAH, S.M.; HARMAPURI, S.D.; MAKKAR, H.P. 2018. Study of chemical composition and nutritional values of vegetable wastes in Bangladesh. Veterinary and Animal Science. 5:31-37. https://doi.org/10.1016/j.vas.2018.02.003 DOI: https://doi.org/10.1016/j.vas.2018.02.003

FARJANA, I.; NARAYAN, R. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Research Notes. 11(445):1-6. https://doi.org/10.1186/s13104-018-3558-4 DOI: https://doi.org/10.1186/s13104-018-3558-4

HALIMAH, N.; BAKTIR, A.; PURKAN, P. 2019. Exploration of Cellulolytic Microorganism as A Biocatalyst Candidate for Liquid Fertilizer Production. IOP Conference Series: Earth and Environmental Science. 217(1):1-10. https://doi.org/10.1088/1755-1315/217/1/012021 DOI: https://doi.org/10.1088/1755-1315/217/1/012021

KAZEEM, M.; SHAH, U.; BAHARUDDIN, A. 2017. Prospecting agro-waste cocktail: supplementation for cellulase production by a newly isolated thermophilic B. licheniformis 2D55. Applied Biochemistry and Biotechnology. 182:1318-1340. https://doi.org/10.1007/s12010-017-2401-z DOI: https://doi.org/10.1007/s12010-017-2401-z

KULIC, G.; RADOJIČIĆ, V. 2011. Analysis of cellulose content in stalks and leaves of large leaf tobacco. Journal of Agricultural Sciences. 56:207-215. https://doi.org/10.2298/JAS1103207K DOI: https://doi.org/10.2298/JAS1103207K

LEMES, A.; EGEA, M.; OLIVEIRA, J.; GAUTÉRIO, G.; RIBEIRO, B.; COELHO, M. 2022. Biological approaches for extraction of bioactive compounds from agro-industrial by-products: a review. Frontiers in Bioengineering and Biotechnology. 9:1-18. DOI: https://doi.org/10.3389/fbioe.2021.802543

MATEI, J.C.; OLIVEIRA, J.A.D.S.; PAMPHILE, J.A.; POLONIO, J.C. 2021. Agro-industrial wastes for biotechnological production as potential substrates to obtain fungal enzymes. Ciência E Natura. 43(72):1-28. https://doi.org/10.3389/fbioe.2021.802543 DOI: https://doi.org/10.5902/2179460X63133

MAZZOLI, R. 2021. Current progress in production of building-block organic acids by consolidated bioprocessing of lignocellulose. Fermentation. 7(248):1-34. https://doi.org/10.5902/2179460X63133

MIRANDA ZOPPAS, F.; MENEGUZZI, A.; TRAMONTINA, F. 2013. Alternatives for cellulase production in submerged fermentation with agroindustrial wastes. International Journal of Engineering Research. 3(4):2374-2381. https://doi.org/10.3390/fermentation7040248 DOI: https://doi.org/10.3390/fermentation7040248

MOJUMDAR, A.; DEKA, J. 2019. Recycling agro-industrial waste to produce amylase and characterizing amylase–gold nanoparticle composite. International Journal of Recycling of Organic Waste in Agriculture. 8:263-269. https://doi.org/10.1007/s40093-019-00298-4 DOI: https://doi.org/10.1007/s40093-019-00298-4

MUHAMMAD, I.; ANWAR, Z.; IRSHAD, M.; JAVAID, M.; ASHFAQ, H. 2016. Cellulase Production from Species of Fungi and Bacteria from Agricultural Wastes and Its Utilization in Industry: A Review. Advances in Enzyme Research. 4(2):44-55. https://doi.org/10.4236/aer.2016.42005 DOI: https://doi.org/10.4236/aer.2016.42005

NAGAIAH, P.; NELLAIAPPAN, O.; POLPASS, A.; RANGASAMY, A.; SOON-WO, K. 2015. Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Frontiers in microbiology. 6:1-11. https://doi.org/10.3389/fmicb.2015.01046 DOI: https://doi.org/10.3389/fmicb.2015.01046

NIYONZIMA, F. 2021. Detergent-compatible fungal cellulases. Folia Microbiologica. 66:25-40. https://doi.org/10.1007/s12223-020-00838-w DOI: https://doi.org/10.1007/s12223-020-00838-w

OLANBIWONINU, A.A.; FASIKU, S. 2015. Production of bacterial amylases and cellulases using sweet potato (Ipomoea batatas. (L.) Lam.) peels. African Journal of Biochemistry. 9(9):104-109. https://doi.org/10.5897/AJBR2015.0841 DOI: https://doi.org/10.5897/AJBR2015.0841

POONDLA, V.; KUMAR YANNAM, S.; NAIDU GUMMADI, S.; SUBRAMANYAM, R. 2016. Enhanced production of pectinase by Saccharomyces cerevisiae isolate using fruit and agro-industrial wastes: Its application in fruit and fiber processing. Biocatalysis and Agricultural Biotechnology. 6:40-50. https://doi.org/10.1016/j.bcab.2016.02.007 DOI: https://doi.org/10.1016/j.bcab.2016.02.007

PRABESH, K.; JAHED, A.; MEHADI, H.; KAMRUL, I; ABUL, K. 2016. Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes. Journal of Bioprocessing & Biotechniques. 6(4):1-5. https://doi.org/10.4172/2155-9821.1000280 DOI: https://doi.org/10.4172/2155-9821.1000280

RAVINDRAN, R.; HASSAN, S.; WILLIAMS, G.; JAISWAL, A. 2018. A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering. 5(4):1-20. https://doi.org/10.3390/bioengineering5040093 DOI: https://doi.org/10.3390/bioengineering5040093

SÁNCHEZ-CASTELBLANCO, E.M.; HEREDIA-MARTÍN, J.P. 2022. Evaluación de residuos orgánicos generados en plazas de mercado para la producción de enzimas bacterianas. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 46(180):675-684. https://doi.org/10.18257/raccefyn.1652 DOI: https://doi.org/10.18257/raccefyn.1652

SARANRAJ, P.; ANANDARAJ, K.; RAJA, E.; SIVASAKTHI, S. 2018. Vermicomposting of market wastes and analysis of its physico-chemical and biological properties. International journal of research and analytical reviews. 5(4):287-296.

SHARMA, I.A.; KAUR, I. 2019. Sustainable cellulases production using solid waste feedstocks. Nature and Science. 19(5):1-18. https://doi.org/10.7537/marsnsj190521.01

SPEDA, J.; JOHANSSON, M.; ODNELL, A.; KARLSSO, M. 2017. Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes. Biotechnol Biofuels. 10(129):1-13. https://doi.org/10.1186/s13068-017-0814-0 DOI: https://doi.org/10.1186/s13068-017-0814-0

YASSIEN, M.; JIMAN-FATANI, A.; HANI, Z. 2014. Production, purification and characterization of cellulase from Streptomyces sp. African Journal of Microbiology Research. 8:348-354. https://doi.org/10.5897/AJMR2013.6500 DOI: https://doi.org/10.5897/AJMR2013.6500

YIN, L.; LIN, H.; XIAO, Z. 2010. Purification and characterization of a cellulase from Bacillus subtilis YJ1. Journal of Marine Science and Technology. 18:466-471. https://doi.org/10.51400/2709-6998.1895 DOI: https://doi.org/10.51400/2709-6998.1895

Citado por