Carotenogénesis y pigmentos en Cucurbita spp.

Carotenogenesis and pigments in Cucurbita spp.

Contenido principal del artículo

Robert Augusto Rodríguez-Restrepo
Magda Piedad Valdés-Restrepo
Juan José Ortiz-López
Sanin Ortiz-Grisales

Resumen

Los carotenoides son pigmentos orgánicos que el organismo no puede sintetizar y deben ser suministrados en la dieta humana. Este artículo de revisión tiene por objetivo abordar la ruta carotenogénica y los pigmentos predominantes en la pulpa de cucurbitáceas, siendo una de las hortalizas con mayor contenido de carotenoides, de tonalidades amarillo y naranja. Se recopiló literatura relevante sobre la temática proveniente de libros y de artículos científicos, identificando que el género Cucurbita, por ser de naturaleza alógama, expresa alta variabilidad fenotípica y genotípica, que es afectada por el ambiente y, ello, supone alta variabilidad en la composición de carotenoides del fruto, tanto cuantitativa como cualitativamente. Los carotenoides son los responsables de dar color característico a las flores y a los frutos; los apocarotenoides son conocidos por dar aromas, fragancias y sabores. El almacenamiento y la biosíntesis de los carotenoides se genera en los plastidios, estos pigmentos se pueden sintetizar por la ruta del metileritritol difosfato (MEP) hasta licopeno, donde se bifurca a α-caroteno y β-caroteno y, posteriormente, mediante hidroxilaciones, se generan las xantofilas. Su importancia en la acumulación de carotenoides en frutos radica en las múltiples funciones y beneficios en plantas, animales y humanos, como fotoreceptores y fotoprotectores de luz, colorantes agroindustriales, antioxidantes, reducción de enfermedades crónicas, precursores de vitamina A, entre otros beneficios, cabe destacar el alto contenido de carotenos totales en cucurbitáceas encontrándose en Cucurbita moschata más de 600 μg/g en genotipos mejorados.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ABBAS, H.M.K.; HUANG, H.X.; WANG, A.J.; WU, T.Q.; XUE, S.D.; AHMAD, A.; XIE, D.S.; LI, J.X.; ZHONG, Y.J. 2020. Metabolic and transcriptomic analysis of two Cucurbita moschata germplasms throughout fruit development. BMC Genomics. 21(1):365. https://doi.org/10.1186/s12864-020-6774-y DOI: https://doi.org/10.1186/s12864-020-6774-y

ACHILONU, M.C.; NWAFOR, I.C.; UMESIOBI, D.O.; SEDIBE, M.M. 2018. Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well-being of poultry species. Journal of Animal Physiology and Animal Nutrition. 102(1):5-16. https://doi.org/10.1111/jpn.12654 DOI: https://doi.org/10.1111/jpn.12654

AGRONET. 2018. Estadísticas agrícolas nacionales. Disponible desde Internet en: www.agronet.gov.co

ALAGOZ, Y.; NAYAK, P.; DHAMI, N.; CAZZONELLI, C.I. 2018. cis-carotene biosynthesis, evolution and regulation in plants: the emergence of novel signaling metabolites. Archives of Biochemistry and Biophysics. 654(1):172–184. https://doi.org/10.1016/j.abb.2018.07.014 DOI: https://doi.org/10.1016/j.abb.2018.07.014

ARMESTO, J.; ROCCHETTI, G.; SENIZZA, B.; PATEIRO, M.; BARBA, F.J.; DOMÍNGUEZ, R.; LUCINI, L.; LORENZO, J.M. 2020. Nutritional characterization of Butternut squash (Cucurbita moschata D.): Effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Research International. 132(1):109052. https://doi.org/10.1016/j.foodres.2020.109052 DOI: https://doi.org/10.1016/j.foodres.2020.109052

AZCÓN-BIETO, J.; TALON, M. 2008. Fundamentos de fisiología vegetal. segunda edición. Ed. McGraw-Hill (España). 669p.

AZEVEDO-MELEIRO, C.H.; RODRIGUEZ-AMAYA, D.B. 2007. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima and Cucurbita pepo. Journal of Agricultural and Food Chemistry 55(10):4027-4033. https://doi.org/10.1021/jf063413d DOI: https://doi.org/10.1021/jf063413d

BAENA GARCÍA, D.; ORTIZ GRISALES, S.; VALDÉS RESTREPO, M.P.; ESTRADA SALAZAR, E.I.; VALLEJO CABRERA, F.A. 2010. UNAPAL –Abanico 75: Nuevo cultivar de zapallo con alto contenido de materia seca en el fruto para fines agroindustriales. Acta Agronómica. 59(3):285-292.

BENMEZIANE, A.; BOULEKBACHE-MAKHLOUF, L.; MAPELLI-BRAHM, P.; KHODJA, N.K.; REMINI, H.; MADANI, K.; MELÉNDEZ-MARTÍNEZ, A.J. 2018. Extraction of carotenoids from cantaloupe waste and determination of its mineral composition. Food Research International. 111(1):391-398. https://doi.org/10.1016/j.foodres.2018.05.044 DOI: https://doi.org/10.1016/j.foodres.2018.05.044

BROWN, D.R.; GOUGH, L.A.; DEB, S.K.; SPARKS, S.A.; MCNAUGHTON, L.R. 2018. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review. Frontiers in Nutrition. 4(1):76. https://doi.org/10.3389/fnut.2017.00076 DOI: https://doi.org/10.3389/fnut.2017.00076

CAMAGNA, M.; GRUNDMANN, A.; BÄR, C.; KOSCHMIEDER, J.; BEYER, P.; WELSCH, R. 2019. Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis. Plant Physiology. 179(3):1013-1027. https://doi.org/10.1104/pp.18.01026 DOI: https://doi.org/10.1104/pp.18.01026

CAO, H.; LUO, H.; YUAN, H.; EISSA, M.A.; THANNHAUSER, T.W.; WELSCH, R.; HAO, Y.J.; CHENG, L; LI, L. 2019. A neighboring aromatic-aromatic amino acid combination governs activity divergence between tomato phytoene synthases. Plant Physiology. 180(4):1988-2003. https://doi.org/10.1104/pp.19.00384 DOI: https://doi.org/10.1104/pp.19.00384

CHEN, J.T.; KOTANI, K. 2016. Astaxanthin as a potential protector of liver function: A Review. Journal of Clinical Medicine Research. 8(10):701-704. https://doi.org/10.14740/jocmr2672w DOI: https://doi.org/10.14740/jocmr2672w

CHO, K.S.; SHIN, M.; KIM, S.; LEE, S.B. 2018. Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative diseases. Oxidative medicine and cellular longevity. 2018:4120458. https://doi.org/10.1155/2018/4120458 DOI: https://doi.org/10.1155/2018/4120458

DAVINELLI, S.; NIELSEN, M.E.; SCAPAGNINI, G. 2018. Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients. 10(4):522. https://doi.org/10.3390/nu10040522 DOI: https://doi.org/10.3390/nu10040522

DHINGRA, D.; BANSAL, Y. 2014. Antidepressant-like activity of beta-carotene in unstressed and chronic unpredictable mild stressed mice. Journal of Functional Foods. 7(1):425-434. https://doi.org/10.1016/j.jff.2014.01.015 DOI: https://doi.org/10.1016/j.jff.2014.01.015

DUTTA, D.; DUTTA, A.; RAYCHAUDHURI, U.; CHAKRABORTY, R. 2006. Rheological characteristics and thermal degradation kinetics of beta-carotene in pumpkin puree. Journal of Food Engineering. 76(4):538-546. https://doi.org/10.1016/j.jfoodeng.2005.05.056 DOI: https://doi.org/10.1016/j.jfoodeng.2005.05.056

ESTRADA S., E.I.; GARCÍA D., M.A.; GUTIÉRREZ F., A.; CARDOZO C., C.I.; SÁNCHEZ, M.S.; BAENA G., D.; VALLEJO C., F.A. 2004. Cultivo de zapallo. Variedad UNAPAL bolo verde y UNAPAL mandarino. Segunda Edición. Universidad Nacional de Colombia Sede Palmira. (Colombia). 19p.

ESTRADA SALAZAR, E.I.; VALLEJO CABRERA, F.A.; BAENA GARCÍA, D.; ORTIZ GRISALES, S.; ZAMBRANO BLANCO, E. 2010. Unapal-Llanogrande, nuevo cultivar de zapallo adaptado a las condiciones del valle geográfico del río Cauca, Colombia. Acta Agronómica. 59(2):135-143.

FAOSTAT. 2020. Base de datos, cultivos (producción). Food and agriculture Organization of the United Nations. Disponible desde Internet en: https://www.fao.org/faostat/es/?#data/QCL/visualize

FEDER, A.; CHAYUT, N.; GUR, A.; FREIMAN, Z.; TZURI, G.; MEIR, A.; SAAR, U.; OHALI, S.; BAUMKOLER, F.; GAL-ON, A.; SHNAIDER, Y.; WOLF, D.; KATZIR, N.; SCHAFFER, A.; BURGER, J.; LI, L.; TADMOR, Y. 2019. The role of carotenogenic metabolic flux in carotenoid accumulation and chromoplast differentiation: Lessons from the melon fruit. Frontiers in Plant Science. 10:1250. https://doi.org/10.3389/fpls.2019.01250 DOI: https://doi.org/10.3389/fpls.2019.01250

FIEDOR, J.; BURDA, K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 6(2):466-488. https://doi.org/10.3390/nu6020466 DOI: https://doi.org/10.3390/nu6020466

GIULIANO, G. 2014. Plant carotenoids: genomics meets multi-gene engineering. Current Opinion in Plant Biology. 19(1):111-117. https://doi.org/10.1016/j.pbi.2014.05.006 DOI: https://doi.org/10.1016/j.pbi.2014.05.006

GOMES RIBEIRO, E.M.; CHITCHUMROONCHOKCHAI, C.; JAEGER DE CARVALHO, L.M.; DE MOURA, F.F.; VIANA DE CARVALHO, J.L.; FAILLA, M.L. 2015. Effect of style of home cooking on retention and bioaccessibility of pro-vitamin A carotenoids in biofortified pumpkin (Cucurbita moschata Duch.). Food Research International. 77(3):620-626. https://doi.org/10.1016/j.foodres.2015.08.038 DOI: https://doi.org/10.1016/j.foodres.2015.08.038

GRIMMIG, B.; KIM, S.H.; NASH, K.; BICKFORD, P.C.; SHYTLE, R.D. 2017. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience. 39(1):19-32. https://doi.org/10.1007/s11357-017-9958-x DOI: https://doi.org/10.1007/s11357-017-9958-x

GUEYE ROKHAYA, S.; DOSSA, M.E.M.; MAMADOU, B.; CHEIKH, S.; YORO T.; DIEDHIOU, A.; IDRISSA, N.; MOUSTAPHA, T.; ROKHAYA, G.; MATAR, S.; DJIBRIL, F.; ALASSANE, W. 2017. Analysis of minerals in watermelon (Citrullus lanatus). Journal of Chemical and Pharmaceutical Research. 9(2):19-24.

HASHIMOTO, H.; URAGAMI, C.; COGDELL, R.J. 2016. Carotenoids and photosynthesis. En: Stange, C. (ed). Carotenoids in nature. Subcellular Biochemistry. Volumen 79. Springer. (Suiza). p.111-139. https://doi.org/10.1007/978-3-319-39126-7_4 DOI: https://doi.org/10.1007/978-3-319-39126-7_4

JAEGER DE CARVALHO, L.; BARROS GOMES, P.; DE OLIVEIRA GODOY, R.; PACHECO, S.; FERNANDES DO MONTE, P.; VIANA DE CARVALHO, J.; NUTTI, M.; LIMA NEVES, A.; RODRIGUES ALVES VIEIRA, A.; RAMALHO RAMOS, S. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. 47(2):337-340. https://doi.org/10.1016/j.foodres.2011.07.040 DOI: https://doi.org/10.1016/j.foodres.2011.07.040

JANG, H.A.; UTOMO, S.D.; KWON, S.Y.; HA, S.H.; XING-GUO, Y.; CHOI, P.S. 2016. Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene. Journal of Plant Biotechnology. 43(3):341-346. https://doi.org/10.5010/JPB.2016.43.3.341 DOI: https://doi.org/10.5010/JPB.2016.43.3.341

KHALIL, A.; TAZEDDINOVA, D.; ALJOUMAA, K.; KAZHMUKHANBETKYZY, Z.A.; ORAZOV, A.; TOSHEV, A.D. 2021. Carotenoids: Therapeutic strategy in the battle against viral emerging diseases, COVID-19: An overview. Preventive Nutrition and Food Science. 26(3):241–261. https://doi.org/10.3746/pnf.2021.26.3.241 DOI: https://doi.org/10.3746/pnf.2021.26.3.241

KIM, N.R.; KIM, H.Y.; KIM, M.H.; KIM, H.M.; JEONG, H.J. 2016. Improvement of depressive behavior by Sweetme Sweet Pumpkin™ and its active compound, β-carotene. Life sciences. 147(1):39-45. https://doi.org/10.1016/j.lfs.2016.01.036 DOI: https://doi.org/10.1016/j.lfs.2016.01.036

KIM, S.H.; KIM, H. 2018. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients. 10(9):1137. https://doi.org/10.3390/nu10091137 DOI: https://doi.org/10.3390/nu10091137

LADO, J.; GAMBETTA, G.; ZACARIAS, L. 2018. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Hortic. 233(1):238-248. https://doi.org/10.1016/j.scienta.2018.01.055 DOI: https://doi.org/10.1016/j.scienta.2018.01.055

LI, L.; YUAN, H.; ZENG, Y.; XU, Q. 2016. Plastids and carotenoid accumulation. En: Stange, C. (eds). Carotenoids in Nature. Subcellular Biochemistry. Volumen 79. Springer. (Suiza). p.273-293. https://doi.org/10.1007/978-3-319-39126-7_10 DOI: https://doi.org/10.1007/978-3-319-39126-7_10

LLORENTE, B.; D'ANDREA, L.; RUIZ-SOLA, M.A.; BOTTERWEG, E.; PULIDO, P.; ANDILLA, J.; LOZA-ALVAREZ, P.; RODRIGUEZ-CONCEPCION, M. 2016. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. The Plant journal: for cell and molecular biology. 85(1):107-119. https://doi.org/10.1111/tpj.13094 DOI: https://doi.org/10.1111/tpj.13094

LU, P.J.; WANG, C.Y.; YIN, T.T.; ZHONG, S.L.; GRIERSON, D.; CHEN, K.S.; XU, C.J. 2017. Cytological and molecular characterization of carotenoid accumulation in normal and high-lycopene mutant oranges. Sci Rep. 7(1):761. https://doi.org/10.1038/s41598-017-00898-y DOI: https://doi.org/10.1038/s41598-017-00898-y

LUO, Y.; WANG, C.; WANG, M.; WANG, Y.; XU, W.; HAN, H.; WANG, Z.; ZHONG, Y.; HUANG, H.; QU, S. 2021. Accumulation of carotenoids and expression of carotenoid biosynthesis genes in fruit flesh during fruit development in two Cucurbita maxima inbred lines. Horticultural Plant Journal. 7(6):529-538. https://doi.org/10.1016/j.hpj.2020.07.006 DOI: https://doi.org/10.1016/j.hpj.2020.07.006

MARTÍNEZ-VALDIVIESO, D.; FONT, R.; BLANCO-DÍAZ, M.T.; MORENO-ROJAS, J.M.; GÓMEZ, P.; ALONSO-MORAGA, A.; DEL RÍO-CELESTINO, M. 2014. Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Computers and Electronics in Agriculture. 108:71-79. https://doi.org/10.1016/j.compag.2014.07.003 DOI: https://doi.org/10.1016/j.compag.2014.07.003

MENDELOVA, A.; MENDEL, Ľ.; FIKSELOVÁ, M.; MAREČEK, J.; VOLLMANNOVA, A. 2017. Winter squash (Cucurbita moschata Duch) fruit as a source of biologically active components after its thermal treatment. Potravinarstvo Slovak Journal of Food Sciences. 11(1):489-495. https://doi.org/10.5219/788 DOI: https://doi.org/10.5219/788

MOISE, A.R.; AL-BABILI, S.; WURTZEL, E.T. 2014. Mechanistic aspects of carotenoid biosynthesis. Chemical Reviews. 114(1):164-193. https://doi.org/10.1021/cr400106y DOI: https://doi.org/10.1021/cr400106y

MORENO BELTRAN, J.C.; STANGE, C. 2016. Apocarotenoids: A New Carotenoid-Derived Pathway. Subcell Biochem. 79:239-272. https://doi.org/10.1007/978-3-319-39126-7_9 DOI: https://doi.org/10.1007/978-3-319-39126-7_9

NAKKANONG, K.; YANG, J.H.; ZHANG, M.F. 2012. Carotenoid accumulation and carotenogenic gene expression during fruit development in novel interspecific inbred squash lines and their parents. Journal of Agricultural Food Chemistry. 60(23):5936-5944. https://doi.org/10.1021/jf3007135 DOI: https://doi.org/10.1021/jf3007135

NEUMAN, H.; GALPAZ, N.; CUNNINGHAM, F.X.; ZAMIR, D.; HIRSCHBERG, J. 2014. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant journal: for cell and molecular biology. 78(1):80-93. https://doi.org/10.1111/tpj.12451 DOI: https://doi.org/10.1111/tpj.12451

NORSHAZILA, S.; IRWANDI, J.; OTHMAN, R.; YUMI ZUHANIS, H.H. 2014. Carotenoid content in different locality of pumpkin (Cucurbita moschata) in Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences. 6(3):29-32.

ORTIZ GRISALES, S.; PASOS LÓPEZ, S.C.; RIVAS ABADÍA, X.C.; VALDÉS RESTREPO, M.P.; VALLEJO, F.A. 2009. Extracción y caracterización de aceite de semillas de zapallo. Acta Agronómica. 58(3):145-151.

ORTIZ GRISALES, S.; VALDÉS RESTREPO, M.P.; VALLEJO CABRERA, F.A.; BAENA GARCÍA, D. 2015. Genetic correlations and path analysis in butternut squash Cucurbita moschata Duch. Revista Facultad Nacional de Agronomía Medellín. 68(1):7399-7409. https://doi.org/10.15446/rfnam.v68n1.47827 DOI: https://doi.org/10.15446/rfnam.v68n1.47827

ORTIZ GRISALES, S.; VALDÉS-RESTREPO, M.P.; VALLEJO CABRERA, F.A. 2020. Efecto de la endocría sobre habilidad combinatoria del rendimiento y calidad en zapallo (Cucurbita moschata Duchesne). Revista U.D.C.A Actualidad & Divulgación Científica. 23(1):1:e1176. https://doi.org/10.31910/rudca.v23.n1.2020.1176 DOI: https://doi.org/10.31910/rudca.v23.n1.2020.1176

ORTIZ GRISALES, S.; VALLEJO CABRERA, F.A.; BAENA GARCÍA, D.; ESTRADA SALAZAR, E.I.; VALDÉS RESTREPO, M.P. 2013. Zapallo para consumo en fresco y fines agroindustriales: Investigación y desarrollo. Universidad Nacional de Colombia, Sede Palmira. Santiago de Cali, Feriva. Colombia. 250p.

PROVESI, J.G.; AMANTE, E.R. 2015. Chapter 9 - Carotenoids in pumpkin and impact of processing treatments and storage. En: Preedy, V. Processing and impact on active components in food. Academic Press. p.71-80. https://doi.org/10.1016/B978-0-12-404699-3.00009-3 DOI: https://doi.org/10.1016/B978-0-12-404699-3.00009-3

RODRÍGUEZ, A.D. 2015. Food Carotenoids: Chemistry, Biology, and Technology. 308p. https://doi.org/10.1002/9781118864364.ch3 DOI: https://doi.org/10.1002/9781118864364.ch3

RODRÍGUEZ-AMAYA, D.B.; KIMURA, M.; GODOY, H.T.; AMAYA-FARFAN, J. 2008. Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis. 21(6):445-463. https://doi.org/10.1016/j.jfca.2008.04.001 DOI: https://doi.org/10.1016/j.jfca.2008.04.001

RODRÍGUEZ-CONCEPCIÓN, M.; AVALOS, J.; BONET, M.L.; BORONAT, A.; GOMEZ-GOMEZ, L.; HORNERO-MENDEZ, D.; LIMON, M.C.; MELÉNDEZ-MARTÍNEZ, A.J.; OLMEDILLA-ALONSO, B.; PALOU, A.; RIBOT, J.; RODRIGO, M.J.; ZACARIAS, L.; ZHU, C. 2018. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research. 70:62-93. https://doi.org/10.1016/j.plipres.2018.04.004 DOI: https://doi.org/10.1016/j.plipres.2018.04.004

RODRÍGUEZ R., R.; VALDÉS R., M.P.; ORTIZ G., S. 2018. Características agronómicas y calidad nutricional de los frutos y semillas de zapallo Cucurbita sp. Revista Colombiana de Ciencia Animal - RECIA. 10(1):86-97. https://doi.org/10.24188/recia.v10.n1.2018.636 DOI: https://doi.org/10.24188/recia.v10.n1.2018.636

RUIZ-SOLA, M.Á.; RODRÍGUEZ-CONCEPCIÓN, M. 2012. Carotenoid biosynthesis in Arabidopsis: A colorful pathway. The arabidopsis book. 10:e0158. https://doi.org/10.1199/tab.0158 DOI: https://doi.org/10.1199/tab.0158

SAHA, S.K.; LEE, S.B.; WON, J.; CHOI, H.Y.; KIM, K.; YANG, G.M.; DAYEM, A.A.; CHO, S.G. 2017. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. International Journal of Molecular Sciences. 18(7):1544 https://doi.org/10.3390/ijms18071544 DOI: https://doi.org/10.3390/ijms18071544

SARABI, B.; BOLANDNAZAR, S.; GHADERI, N.; GHASHGHAIE, J. 2017. Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. Plant physiology and biochemistry. 119:294-311. https://doi.org/10.1016/j.plaphy.2017.09.006 DOI: https://doi.org/10.1016/j.plaphy.2017.09.006

SCHILDKRAUT, J.J. 1965. The catecholamine hypothesis of affective disorders: a review of supporting evidence. The American Journal of Psychiatry. 122(5):509-22. https://doi.org/10.1176/ajp.122.5.509 DOI: https://doi.org/10.1176/ajp.122.5.509

SHI, X.; WU, H.; SHI, J.; XUE, S.J.; WANG, D.; WANG, W.; CHENG, A.; GONG, Z.; CHEN, X.; WANG, C. 2013. Effect of modifier on the composition and antioxidant activity of carotenoid extracts from pumpkin (Cucurbita maxima) by supercritical CO2. LWT - Food Science and Technology. 51(2):433-440. https://doi.org/10.1016/j.lwt.2012.11.003 DOI: https://doi.org/10.1016/j.lwt.2012.11.003

SINGH, A.; KUMAR, V. 2021. Nutritional, phytochemical, and antimicrobial attributes of seeds and kernels of different pumpkin cultivars. Food Frontiers. 3(1):182-193. https://doi.org/10.1002/fft2.117 DOI: https://doi.org/10.1002/fft2.117

SONG, J.; WEI, Q.; WANG, X.; LI, D.; LIU, C.; ZHANG, M.; MENG, L. 2018. Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Research International. 107:130-136. https://doi.org/10.1016/j.foodres.2018.02.024 DOI: https://doi.org/10.1016/j.foodres.2018.02.024

SUN, T.; RAO, S.; ZHOU, X.; LI, L. 2022. Plant carotenoids: recent advances and future perspectives. Molecular Horticulture. 2(3). https://doi.org/10.1186/s43897-022-00023-2 DOI: https://doi.org/10.1186/s43897-022-00023-2

SUN, T.; YUAN, H.; CAO, H.; YAZDANI, M.; TADMOR, Y.; LI, L. 2017. Carotenoid metabolism in plants: the role of plastids. Molecular Plant. 11(1):58-74. https://doi.org/10.1016/j.molp.2017.09.010 DOI: https://doi.org/10.1016/j.molp.2017.09.010

THORNE-LYMAN, A.; FAWZI, W.W. 2012. Vitamin D during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatric and Perinatal Epidemiology. 26(Suppl 1):75-90. https://doi.org/10.1111/j.1365-3016.2012.01283.x DOI: https://doi.org/10.1111/j.1365-3016.2012.01283.x

TUAN, P.A.; LEE, J.; PARK, C.H.; KIM, J.K.; NOH, Y.H.; KIM, Y.B.; KIM, H.R.; PARK, S.U. 2019. Carotenoid biosynthesis in oriental melon (Cucumis melo L. var. makuwa). Foods. 8(2):77. https://doi.org/10.3390/foods8020077 DOI: https://doi.org/10.3390/foods8020077

VALDÉS RESTREPO, M.P.; ORTIZ GRISALES, S.; VALLEJO CABRERA, F.A.; BAENA GARCÍA, D. 2014. Variabilidad en frutos y semillas de Cucurbita moschata Duch. y Cucurbita argyrosperma subsp. sororia L.H. Bailey Merrick & D.M. Bates. Acta Agronómica. 63(2):282-293. https://doi.org/10.15446/acag.v63n3.41052 DOI: https://doi.org/10.15446/acag.v63n3.41052

VALDEZ-ARJONA, L.P.; RAMÍREZ-MELLA, M. 2019. Pumpkin waste as livestock feed: impact on nutrition and animal health and on quality of meat, milk, and egg. Animals. 9(10):769. https://doi.org/10.3390/ani9100769 DOI: https://doi.org/10.3390/ani9100769

VALLEJO C., F.A.; BAENA G., D.; ORTIZ G., S.; ESTRADA S., E.I. TOBAR T., D.E. 2010. Unapal-Dorado, nuevo cultivar de zapallo con alto contenido de materia seca para consumo en fresco. Acta Agronómica. 59(2):127-134.

VOLKOV, V. 2015. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science. 6:873. http://dx.doi.org/10.3389/fpls.2015.00873 DOI: https://doi.org/10.3389/fpls.2015.00873

WANG, Q.; WU, C.; XIE, B.; LIU, Y.; CUI, J.; CHEN, G.; ZHANG, Y. 2012. Model analysing the antioxidant responses of leaves and roots of switchgrass to NaCl-salinity stress. Plant Physiology Biochemistry. 58:288-296. https://doi.org/10.1016/j.plaphy.2012.06.021 DOI: https://doi.org/10.1016/j.plaphy.2012.06.021

WELSCH, R.; ARANGO, J.; BÄR, C.; SALAZAR, B.; AL-BABILI, S.; BELTRÁN, J.; CHAVARRIAGA, P.; CEBALLOS, H.; TOHME, J.; BEYER P. 2010. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell. 22(10):3348-3356. https://doi.org/10.1105/tpc.110.077560 DOI: https://doi.org/10.1105/tpc.110.077560

WIDOMSKA, J.; WELC, R.; GRUSZECKI, W.I. 2019. The effect of carotenoids on the concentration of singlet oxygen in lipid membranes. Biochim. Biophys. Acta (BBA) - Biomembranes. 1861(4):845-851. https://doi.org/10.1016/j.bbamem.2019.01.012 DOI: https://doi.org/10.1016/j.bbamem.2019.01.012

XUAN, R.R.; NIU, T.T.; CHEN, H.M. 2016. Astaxanthin blocks preeclampsia progression by suppressing oxidative stress and inflammation. Molecular Medicine Reports. 14(3):2697-2704. https://doi.org/10.3892/mmr.2016.5569 DOI: https://doi.org/10.3892/mmr.2016.5569

YUAN, H.; ZHANG, J.; NAGESWARAN, D.; LI, L. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research. 2:15036. https://doi.org/10.1038/hortres.2015.36 DOI: https://doi.org/10.1038/hortres.2015.36

ZHANG, Y.; NAVARRO, E.; CÁNOVAS-MÁRQUEZ, J.T.; ALMAGRO, L.; CHEN, H.; CHEN, Y.Q.; ZHANG, H.; TORRES-MARTÍNEZ, S.; CHEN, W.; GARRE, V. 2016. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering. Microb Cell Fact. 15:99. https://doi.org/10.1186/s12934-016-0493-8 DOI: https://doi.org/10.1186/s12934-016-0493-8

Citado por