Modelamiento matemático de la cinética de secado de espagueti enriquecido con pulpa de zapallo deshidratada (Cucurbita moschata)

Contenido principal del artículo

Autores

Natali López-Mejía https://orcid.org/0000-0001-9136-5205
Margarita María Andrade-Mahecha https://orcid.org/0000-0002-6329-8022
Hugo Alexander Martínez-Correa https://orcid.org/0000-0002-9617-0033

Resumen

A pesar que diversos estudios se han llevado a cabo sobre modelamiento matemático de las cinéticas de secado de espagueti, no se han desarrollado para espaguetis con sustitución de sémola de trigo Triticum durum por pulpa de zapallo deshidratada (PZD), por lo tanto, el objetivo de esta investigación fue modelar las cinéticas de secado de espagueti sustituido parcialmente con PZD (5 y 10g/100g harina), evaluar el efecto de la sustitución y la temperatura (50 y 60°C), sobre el tiempo de secado (contenido de humedad final = 0,13g/g b.s.), la difusividad efectiva (De) y algunas características que definen la calidad del producto (contenido de humedad, calidad de cocción y contenido de carotenoides totales). Para ello, se emplearon modelos matemáticos reportados en la literatura, como también la segunda ley de Fick, para un cilindro infinito. Los resultados mostraron que los modelos Henderson & Pabis y el Logarítmico presentaron mayor ajuste (R2 ≥ 0,90) a las cinéticas de secado experimentales; por el contrario, el modelo de Lewis presentó el menor ajuste. Se obtuvieron tiempos de secado de 5,00-4,10h, para las cinéticas realizadas a 50°C y tiempos de secado de 3,40-2,80h (aproximadamente), para las cinéticas a 60°C. De varió desde 1,50 hasta 2,50 x 10-7 cm2s-1, la cual, aumentó con la temperatura. En definitiva, la calidad del espagueti se afectó negativamente con el aumento de PZD y positivamente con el aumento de la temperatura de secado.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. AMERICAN ASSOCIATION OF CEREAL CHEMISTS, AACCI. 2000. 66-50.01. 11th Ed, Pasta and Noodle Cooking Quality—Firmness. St. Paul, MN, USA

2. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS, AOAC. 2003. Official Methods of Analysis, Washington D.C., USA

3. AGRAWAL, Y.C.; SINGH, R.D. 1977. Thin layer drying studies for short grain rice. Transactions of the American society of Agricultural and Biological Engineers (USA). 77:3531

4. ALJAHANI, A.; CHEIKHOUSMAN, R. 2017. Nutritional and sensory evaluation of pumpkin-based (Cucurbita maxima) functional juice. Nutrition and Food Science (United Kingdom). 47(3):346-356. https://doi.org/10.1108/NFS-07-2016-0109

5. ASTAÍZA, M.; RUÍZ, L.; ELIZALDE, A. 2010. Elaboración de pastas alimenticias enriquecidas a partir de harina de quinua (Chenopodium quinoa wild.) y zanahoria (Daucus carota). Biotecnología en el Sector Agropecuario y Agroindustrial. (Colombia). 8(1):43-53

6. BERGANTIN, C.; MAIETTI, A.; TEDESCHI, P.; FONT, G.; MANYES, L.; MARCHETTI, N. 2018. HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “Delica” (Cucurbita maxima) and “Violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules. (Switzerland). 23:1-13. https://doi.org/10.3390/molecules23112791

7. CHHINNAN, M.S. 1984. Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Transactions Am. Soc. Agricultural and Biological Engineers. (USA). 27(2):610-615. https://doi.org/10.13031/2013.32837

8. CRANK, J. 1975. The Diffusion Equations. Oxford University. The mathematics of Diffusión. Great Britain, England. 2a Ed., p.5-10

9. DE CARVALHO, L.M.J.; GOMES, P.B.; GODOY, R.L. DE O.; PACHECO, S.; DO MONTE, P.H.F.; DE CARVALHO, J.L.V.; NUTTI, M.R.; LIMA NEVES, A.C.; RODRIGUES ALVES VIEIRA, A.C.; RAMOS, S.R.R. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. (Netherlands). 47(2):337340. https//doi.org/10.1016/j.foodres.2011.07

10. DE PILLI, T.; GIULIANI, R.; DEROSSI, A.; SEVERINI, C. 2009. Study of cooking quality of spaghetti dried through microwaves and comparison with hot air dried pasta. J. Food Engineering. (USA). 95(3):453-459. https//:doi.org/10.1016/j.jfoodeng.2009.06.005

11. DE TEMMERMAN, J.; VERBOVEN, P.; NICOLAI, B.; RAMON, H. 2007. Modelling of transient moisture concentration of semolina pasta during air drying. J. Food Engineering. 80(3):892-903. https://doi.org/10.1016/j.jfoodeng.2006.08.004

12. DEXTER, J.E.; MATSUO, R.R.; MORGAN, B.C. 1981. High Temperature Drying: Effect on Spaghetti Properties. J. Food Science. (USA). 46:1741-1746. https://doi.org/10.1111/j.1365-2621.1981.tb04476.x

13. ERTEKIN, C.; YALDIZ, O. 2004. Draying of eggplant and selection of a suitable thin layer drying model, J. Food Engineering. 63(4):349-359. https://doi.org/10.1016/j.jfoodeng.2003.08.007

14. ESCALADA PLA, M.F.; PONCE, N.M.; STORTZ, C.A.; GERSCHENSON, L.N.; ROJAS, A.M. 2007. Composition and functional properties of enriched fiber products obtained from pumpkin (Cucurbita moschata Duchesne ex Poiret). LWT- Food Science and Technology. (Switzerland). 40:1176-1185. https://doi.org/10.1016/j.lwt.2006.08.006

15. GEANKOPLIS, C.J. 1998. Procesos de transporte y operaciones unitarias. Compañía Editorial Continental, S.A. de C.V. México, 3a Ed. 1007p

16. GONZÁLEZ, E.; MONTENEGRO, M.A.; NAZARENO, M.A. 2001. Carotenoid composition and vitamin A value of an Argentinian squash (Cucurbita moschata). Arch. Latinoam. Nutrición (Venezuela), 51(4):395-399

17. HENDERSON, S.M. 1974. Progress in developing the thin-layer drying equation. Transactions Am. Soc. Agricultural and Biological Engineers. 17(6):1167-1168/1172 https://doi.org/10.13031/2013.37052

18. IHNS, R.; DIAMANTE, L.M.; SAVAGE, G P.; VANHANEN, L. 2011. Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Internal J. Food Science & Technology (United Kingdom). 46(2):275-283. https://doi.org/10.1111/j.1365-2621.2010.02506.x

19. KANDLAKUNTA, B.; RAJENDRAN, A.; THINGNGANING, L. 2008. Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chemistry. (Netherlands), 106(1):85-89 https://doi.org/10.1016/j.foodchem.2007.05.071

20. LARROSA, V.; LORENZO, G.; ZARITZKY, N.; CALIFANO, A. 2016. Modelado matemático del secado de pastas libres de gluten en relación a la temperatura y humedad relativa del aire. Rev. Laboratorio Tecnológico del Uruguay. 11:54-58

21. LU, A.; YU, M.; FANG, Z.; XIAO, B.; GUO, L.; WANG, W.; LI, J.; WANG, S.; Zhang, Y. 2019. Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. International J. Biological Macromolecules. (Netherlands). 121:261-269. https://doi.org/10.1016/j.ijbiomac.2018.09.158

22. MANTHEY, F.A.; SCHORNO, A. 2002. Physical and cooking quality of spaghetti made from whole-wheat durum. Cereal Chemestry. (United States). 79:504-510. https://doi.org/10.1094/CCHEM.2002.79.4.504

23. MERCIER, S.; MORESOLI, C.; VILLENEUVE, S.; MONDOR, M.; MARCOS, B. 2013. Sensitivity analysis of parameters affecting the drying behaviour of durum wheat pasta. J. Food Engineering. 118(1):108-116. https://doi.org/10.1016/j.jfoodeng.2013.03.024

24. MINAROVIČOVÁ, L.; LAUKOVÁ, M.; KOHAJDOVÁ, Z.; KAROVIČOVÁ, J.; KUCHTOVÁ, V. 2017. Effect of pumpkin powder incorporation on cooking and sensory parameters of pasta. Potravinarstvo Slovak J. Food Sciences. 11(1):373-379.https://doi.org/10.5219/743

25. MIRHOSSEINI, H.; ABDUL RASHID, N.F.; TABATABAEE AMID, B.; CHEONG, K.W.; KAZEMI, M.; ZULKURNAIN, M. 2015. Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. LWT - Food Science and Technology. 63(1):184-190.https://doi.org/10.1016/j.lwt.2015.03.078

26. NOOR, A.A.; KOMATHI, C.A. 2009. Physicochemical and Functional Properties of Peeled and Unpeeled Pumpkin Flour. J. Food Science. 74(7):328-333.https://doi.org/10.1111/j.1750-3841.2009.01298.x

27. ORDOÑEZ - SANTOS, L.E.; HURTADO, P.; RÍOS, O.D.; ARIAS, M.E. 2014. Concentración de carotenoides totales en residuos de frutas tropicales, Producción+Limpia (Colombia). 9 (1):91-98

28. ORREGO, C.E.; VALLEJO, D.; MANRIQUE, D.L.; GONZÁLEZ, J.D.; OCAMPO, J.C. 2016. Inactivación de peroxidasa en banano (Musa paradisiaca) por medio de tratamiento térmico y ultrasónico. Agronomía Colombiana. 34(1Supl.):S457-S460

29. OZDEMIR, M.; DEVRES, Y.O. 1999. The thin layer drying characteristics of hazelnuts during roasting. J. Food Engineering. 42(4):225-233. https://doi.org/10.1016/S0260-8774(99)00126-0

30. PADALINO, L.; CALIANDRO, R.; CHITA, G.; CONTE, A.; DEL NOBILE, M. A. 2016. Study of drying process on starch structural properties and their effect on semolina pasta sensory quality. Carbohydrate Polymers. (Inglaterra). 153: 229-235.https://doi.org/10.1016/j.carbpol.2016.07.102

31. POTOSÍ-CALVACHE, D.C.; VANEGAS-MAHECHA, P.; MARTINEZ, H.A. 2017. Convective drying of squash (Cucurbita moschata): Influence of temperature and air velocity on effective moisture diffusivity, carotenoid content and total phenols. DYNA (Colombia). 84(202):112-119.https://doi.org/10.15446/dyna.v84n202.63904

32. SAMRITTHISUTH, C.; RATTANASUMAWONG, S. 2013. Effect of drying temperature on rehydration properties of dried rice noodle. Conference peper, Procedings of the 51st Kasetsart University Annual Conference, Bangkok, Thailand, 5 -7 February 2013, p.175 ref 8

33. SHARAF-ELDEEN, O.; BLAISDELL, Y.I.; SPAGNA, G. 1980. A model for ear corn drying. Transactions Am. Soc. Agricultural and Biological Engineers. 23(5):1261-1271.https://doi.org/10.13031/2013.34757

34. VEGA, A.; FITO, P. 2005. Modelado de la cinética de secado del pimiento Rojo (Capsicum annuum L. cv Lamuyo). Inform. Tecnológica (Chile). 16(6):3-11. https://doi.org/10.4067/S0718-07642005000600002

35. WAANANEN, K.M. 1996. Effect of porosity on moisture diffusion during drying of pasta. J. Food Engineering. 28(2):121-137. https://doi.org/10.1016/0260-8774(94)00082-4

36. WESTERMAN, P.W.; WHITE, G.M.; ROSS, I.J. 1973. Relative humidity effect on the high temperature drying of shelled corn. Transactions Am. Soc. Agricultural and Biological Engineers. 16:1136-1139.https://doi.org/10.13031/2013.37715

37. YAGCIOGLU, A.; DEGIRMENCIOGLU, A.; CAGATAY, F. 1999. Drying characteristics of laurel leaves under different drying conditions. In Proceedings of the 7th international congress on agricultural mechanization and energy, Adana, Turkey

Descargas

La descarga de datos todavía no está disponible.