CFD acoplada a la metodología de superficie de respuesta para optimizar la conductividad térmica efectiva y la homogeneidad en un secador de bandejas

CFD-response surface methodology to optimize the effective thermal conductivity and homogeneity in tray dryer

Contenido principal del artículo

Resumen

Los secadores de bandejas se suelen diseñar con reglas de escala simplistas, que no tienen en cuenta todos los fenómenos de transporte, asociados con el secado. El uso de dinámica de fluidos computacional junto con la metodología de superficie de respuesta puede ser una herramienta poderosa, para evaluar cómo los diferentes parámetros de diseño del secador de bandeja afectan el proceso de secado. En este trabajo se parametrizaron dos secadores de bandeja, uno con entrada de aire lateral y otro con entrada de aire inferior, variando la posición de la entrada de aire, la longitud del secador y la distancia entre las bandejas. Se eligió un diseño compuesto central, para determinar los puntos de muestra y se calcularon la viscosidad de turbulencia promedio y la conductividad térmica efectiva, así como el índice de homogeneidad. Con estos valores se construyó una curva de superficie de respuesta. Se mejoró la conductividad térmica efectiva y su índice de homogeneidad (80 y 11 %, respectivamente), con una mayor distancia entre platos y una entrada de aire, ubicada en el medio de la cara de entrada en el mejor escenario. Además, las reducciones en los resultados de la conductividad térmica efectiva fueron mínimas, debido al proceso de ampliación en términos de la longitud del secador.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ANSYS, INC. 2017. ANSYS Fluent Tutorial Guide. 1052p. Disponible desde Internet en:

http://users.abo.fi/rzevenho/ansys%20fluent%2018%20tutorial%20guide.pdf

ARJMANDI, H.; AMIRI, P.; SAFFARI POUR, M. 2020. Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress. 18:100514. https://doi.org/10.1016/J.TSEP.2020.100514 DOI: https://doi.org/10.1016/j.tsep.2020.100514

BAL, S.; MISHRA, P.C.; SATAPATHY, A.K. 2018. Optimization of spray parameters for effective microchannel cooling using surface response methodology. International Journal of Heat and Technology. 36(3):973-980. https://doi.org/10.18280/IJHT.360325 DOI: https://doi.org/10.18280/ijht.360325

BEYHAGHI, S.; XU, Z.; PILLAI, K.M. 2016. Achieving the inside-outside coupling during network simulation of isothermal drying of a porous medium in a turbulent flow. Transport in Porous Media. 114:823-842. https://doi.org/10.1007/s11242-016-0746-3 DOI: https://doi.org/10.1007/s11242-016-0746-3

BÖHNER, M.; BARFUSS, I.; HEINDL, A.; MÜLLER, J. 2013. Improving the airflow distribution in a multi-belt conveyor dryer for spice plants by modifications based on computational fluid dynamics. Biosystems Engineering. 115(3):339-345. https://doi.org/10.1016/J.BIOSYSTEMSENG.2013.03.012 DOI: https://doi.org/10.1016/j.biosystemseng.2013.03.012

CHILKA, A.G.; RANADE, V.V. 2018. CFD modelling of almond drying in a tray dryer. The Canadian Journal of Chemical Engineering. 97(2):560-572. https://doi.org/10.1002/cjce.23357 DOI: https://doi.org/10.1002/cjce.23357

DARABI, H.; ZOMORODIAN, A.; AKBARI, M.H.; LORESTANI, A.N. 2015. Design a cabinet dryer with two geometric configurations using CFD. Journal of Food Science and Technology. 52(1):359-366. https://doi.org/10.1007/S13197-013-0983-1 DOI: https://doi.org/10.1007/s13197-013-0983-1

DASORE, A.; KONIJETI, R. 2019. Numerical simulation of air temperature and air flow distribution in a cabinet tray dryer. International Journal of Innovative Technology and Exploring Engineering. 8(11):2278-3075. https://doi.org/10.35940/ijitee.K1787.0981119 DOI: https://doi.org/10.35940/ijitee.K1787.0981119

DEFRAEYE, T. 2014. Advanced computational modelling for drying processes - A review. Applied Energy. 131:323-344. https://doi.org/10.1016/J.APENERGY.2014.06.027 DOI: https://doi.org/10.1016/j.apenergy.2014.06.027

ESPARZA E., J.; GRISALES M.J., F.; PÉREZ, S.F., J.; ORDÓÑEZ S.L, E.; LOBATÓN G.H., F. 2019. Influence of the thermal conductivity of air on the moisture homogeneity of a tray dryer. International Journal of Heat and Technology. 37(1):322-326. https://doi.org/10.18280/IJHT.370138 DOI: https://doi.org/10.18280/ijht.370138

FIGIEL, A.; MICHALSKA, A. 2017. Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. International Journal of Molecular Sciences. 18(1):71. https://doi.org/10.3390/IJMS18010071 DOI: https://doi.org/10.3390/ijms18010071

GHOLAMZADEHDEVIN, M.; PAKZAD, L. 2019. Hydrodynamic characteristics of an activated sludge bubble column through computational fluid dynamics (CFD) and response surface methodology (RSM). The Canadian Journal of Chemical Engineering. 97(4):967-982. https://doi.org/10.1002/CJCE.23335 DOI: https://doi.org/10.1002/cjce.23335

HANDAYANI, S.U.; YOHANA, E.; TAUVIQIRRAHMAN, M.; RAHMAN, A.G.; YULIANTO, M.E.; CHOI, K.H. 2023. Performance improvement of continuous horizontal fluidised bed dryer based on computational fluid dynamics. Results in Engineering. 17:100972. https://doi.org/10.1016/J.RINENG.2023.100972 DOI: https://doi.org/10.1016/j.rineng.2023.100972

KHATIR, Z.; THOMPSON, H.; KAPUR, N.; TOROPOV, V.; PATON, J. 2013. Multi-objective Computational Fluid Dynamics (CFD) design optimisation in commercial bread-baking. Applied Thermal Engineering. 60(1-2):480-486. https://doi.org/10.1016/J.APPLTHERMALENG.2012.08.011 DOI: https://doi.org/10.1016/j.applthermaleng.2012.08.011

LECORVAISIER, E.; DARCHE, S.; DA SILVA, Z.E.; DA SILVA, C.K.F. 2010. Theoretical model of a drying system including turbulence aspects. Journal of Food Engineering. 96(3):365-373. https://doi.org/10.1016/j.jfoodeng.2009.08.008 DOI: https://doi.org/10.1016/j.jfoodeng.2009.08.008

MARGARIS, D.P.; GHIAUS, A.G. 2006. Dried product quality improvement by air flow manipulation in tray dryers. Journal of Food Engineering. 75(4):542-550. https://doi.org/10.1016/J.JFOODENG.2005.04.037 DOI: https://doi.org/10.1016/j.jfoodeng.2005.04.037

MANSOUR, M.; KHOT, P.; THÉVENIN, D.; NIGAM, K.D.P.; ZÄHRINGER, K. 2020. Optimal Reynolds number for liquid-liquid mixing in helical pipes. Chemical Engineering Science. 214:114522. https://doi.org/10.1016/J.CES.2018.09.046 DOI: https://doi.org/10.1016/j.ces.2018.09.046

NDISYA, J.; MBUGE, D.; KULIG, B.; GITAU, A.; HENSEL, O.; STURM, B. 2020. Hot air drying of purple-speckled Cocoyam (Colocasia esculenta (L.) Schott) slices: Optimisation of drying conditions for improved product quality and energy savings. Thermal Science and Engineering Progress. 18:100557. https://doi.org/10.1016/J.TSEP.2020.100557 DOI: https://doi.org/10.1016/j.tsep.2020.100557

NEMA, P.K.; PAL KAUR, B.; MUJUMDAR, A.S. 2015. Drying technologies for foods: Fundamentals and applications. New India Publishing Agency. 374p.

PARPAS, D.; AMARIS, C.; TASSOU, S.A. 2018. Investigation into air distribution systems and thermal environment control in chilled food processing facilities. International Journal of Refrigeration. 87:47-64. https://doi.org/10.1016/J.IJREFRIG.2017.10.019 DOI: https://doi.org/10.1016/j.ijrefrig.2017.10.019

PRECOPPE, M.; JANJAI, S.; MAHAYOTHEE, B.; MÜLLER, J. 2015. Batch uniformity and energy efficiency improvements on a cabinet dryer suitable for smallholder farmers. Journal of Food Science and Technology. 52:4819-4829. https://doi.org/10.1007/S13197-014-1544-Y DOI: https://doi.org/10.1007/s13197-014-1544-y

QADER, B.S.; SUPENI, E.E.; ARIFFIN, M.K.A.; TALIB, A.R.A. 2019. RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater. Renewable Energy. 136:48-68. https://doi.org/10.1016/J.RENENE.2018.12.099 DOI: https://doi.org/10.1016/j.renene.2018.12.099

SABAREZ, H.T. 2016. Airborne Ultrasound for Convective Drying Intensification. In: Knoerzer, K.; Juliano, P.; Smithers, G. (eds). Innovative food processing technologies: extraction, separation, component modification and process intensification. Woodhead Publishing Series in Food Science, Technology and Nutrition. p.361-386. https://doi.org/10.1016/B978-0-08-100294-0.00014-6 DOI: https://doi.org/10.1016/B978-0-08-100294-0.00014-6

SALAMI, P.; AHMADI, H.; KEYHANI, A.; SARSAIFEE, M. 2010. Strawberry post-harvest energy losses in Iran. Researcher. 2(4):67-73.

SAMRUAMPHIANSKUN, T.; PIUMSOMBOON, P.; CHALERMSINSUWAN, B. 2012. Effect of ring baffle configurations in a circulating fluidized bed riser using CFD simulation and experimental design analysis. Chemical Engineering Journal. 210:237-251. https://doi.org/10.1016/J.CEJ.2012.08.079 DOI: https://doi.org/10.1016/j.cej.2012.08.079

SUBRAMANIAM, P. 2016. The stability and shelf life of food. Second edition. Woodhead Publishing Series in Food Science, Technology and Nutrition. 590p. https://doi.org/10.1016/C2015-0-06842-3 DOI: https://doi.org/10.1016/C2015-0-06842-3

TZEMPELIKOS, D.; VOUROS, A.; BARDAKAS, A.; FILIOS, A.; MARGARIS, D. 2012. Analysis of air velocity distribution in a laboratory batch-type tray air dryer by computational fluid dynamics. International Journal of Mathematics and Computers in Simulation. 6(5):413-421.

VARGAS, N.A.; CAICEDO, M.; MARTÍNEZ-CORREA, H.A.; LOBATÓN, H.F. 2018. Drying uniformity analysis in a tray dryer: An experimental and simulation approach. Advance Journal of Food Science and Technology. 233-238. https://doi.org/10.19026/AJFST.14.5901 DOI: https://doi.org/10.19026/ajfst.14.5901

Citado por