Isotermas de adsorción y propiedades termodinámicas en harina de tarwi (Lupinus mutabilis)
Adsorption isotherms and thermodynamic properties in tarwi (Lupinus mutabilis) flour
Contenido principal del artículo
Resumen
En Perú, el tarwi (Lupinus mutabilis) se comercializa principalmente como grano entero, su conversión en harina es limitada y casi nula como harina desgrasada o hidrolizada. Aunque es rico en proteínas y lípidos, su valorización en el mercado peruano sigue siendo baja. Las isotermas de sorción son herramientas fundamentales para estudiar procesos, como secado, mezcla, permeabilidad y envasado, permitiendo predecir la estabilidad fisicoquímica de los alimentos. En este estudio se evaluaron por gravimetría, las isotermas de sorción de harinas de tarwi, en tres condiciones: deslupinizada (1), desgrasada (2) e hidrolizada (3), junto con sus propiedades termodinámicas. Las muestras se expusieron a actividades de agua (aw), entre 0,1 y 0,9 y a temperaturas de 20, 30 y 40 °C. Los datos obtenidos fueron ajustados mediante el modelo GAB (Guggenheim, Anderson y de Boer). Se analizaron parámetros, como calor isostérico (Qst), superficie de adsorción (AS), entropía de sorción (ΔS) y energía libre de Gibbs (ΔG). Se observó que al aumentar la aw, también lo hizo la humedad de equilibrio (Xm), mientras que para una aw constante, el aumento de temperatura redujo Xm. Las isotermas mostraron una forma sigmoidal tipo II. Los mayores valores de Qst se registraron en la harina hidrolizada. Los valores de monocapa y área superficial fueron mayores a 20 °C, en todos los casos; además, la harina condición en 2 tuvo los máximos valores, con 0,087 g H2O/g m.s. y 308,86 m2/g m.s., respectivamente, mientras que ΔG indicó espontaneidad en los procesos para condiciones 2 y 3
Palabras clave:
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
- Sociedad académica
- Universidad de Ciencias Aplicadas UDCA
- Editorial
- Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Detalles del artículo
Referencias (VER)
ABATI, J.; ZUCARELI, C.; BRZEZINSKI, C.; LOPES, I.; KRZYZANOWSKI, F; MORAES, L.; HENNING, F. 2021. Water absorption and storage tolerance of soybean seeds with contrasting seed coat characteristics. Acta Scientiarum Agronomy. 44(1):e53096. https://doi.org/10.4025/actasciagron.v44i1.53096
ALAMRI, M.; MOHAMED, A.; HUSSAIN, S.; IBRAHEEM, M.; ABDO QASEM, A. 2018. Determination of moisture sorption isotherm of crosslinked millet flour and oxirane using GAB and BET. Journal of Chemistry. 2018:2369762. https://doi.org/10.1155/2018/2369762
ARSLAN-TONTUL, S. 2020. Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. Food Science and Technology. 119:108859. https://doi.org/10.1016/j.lwt.2019.108859
ARSLAN-TONTUL, S. 2021. Moisture sorption isotherm and thermodynamic analysis of quinoa grains. Heat and Mass Transfer. 57(3):543-550. https://doi.org/10.1007/s00231-020-02978-8
AYALA APONTE, A.A. 2016. Propiedades termodinámicas de humedad de sorción en harina de yuca. DYNA. 83(197):138-144. https://doi.org/10.15446/dyna.v83n197.51543
AZHAR, M.; ABD HASHIB, S.; IBRAHIM, U.; MD ZAKI, N.; AHMAD ZAMANHURI, N.; ABD RAHMAN, N. 2021. Moisture sorption isotherm and thermodynamic properties of Centella asiatica L. (CAL) powder. Chemical Engineering Communications. 208(4):573-582. https://doi.org/10.1080/00986445.2020.1780213
BERRU, L.; GLORIO-PAULET, P.; BASSO, C.; SCARAFONI, A.; CAMARENA, F.; HIDALGO, A.; BRANDOLINI, A. 2021. Chemical composition, tocopherol and carotenoid content of seeds from different Andean Lupin (Lupinus mutabilis) ecotypes. Plant Foods for Human Nutrition. 76(1):98-104. https://doi.org/10.1007/s11130-021-00880-0
BHANDARI, B.; ADHIKARI, B. 2008. Water activity in food processing and preservation. En: Chen, X.D.; Mumumdar, A.S. (Eds.), Drying technologies in food processing. Blackwell Publishing. p.55-89.
BRUNAUER, S.; DEMING, L.; DEMING, W.; TELLER, E. 1940. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society. 62(7):1723-1732. https://doi.org/10.1021/ja01864a025
CARVAJAL-LARENAS, F.; LINNEMANN, A.; NOUT, M.; KOZIOL, M.; VAN BOEKEL, M. 2016. Lupinus mutabilis: Composition, uses, toxicology, and debittering. Critical Reviews in Food Science and Nutrition. 56(9):1454-1487. https://doi.org/10.1080/10408398.2013.772089
CHALAMPUENTE-FLORES, D.; MOSQUERA-LOSADA, M.; DE RON, A.; TAPIA BASTIDAS, C.; SØRENSEN, M. 2023. Morphological and ecogeographical diversity of the Andean Lupine (Lupinus mutabilis Sweet) in the high andean region of Ecuador. Agronomy. 13(8):2064. https://doi.org/10.3390/agronomy13082064
CHEN, J.; KHAJE, M.; MEHDI, M.; ALTALBAWY, F.; TURKI, A.; ALI EFTEKHARI, S.; HASHEMIAN, M.; TOGHRAIE, D.; FADEL, Z. 2023. Transverse vibration analysis of double-walled carbon nanotubes in an elastic medium under temperature gradients and electrical fields based on nonlocal Reddy beam theory. Materials Science and Engineering. B. 291:116220. https://doi.org/10.1016/j.mseb.2022.116220
CHENG, X.; LING, P.; IQBAL, M.; LIU, F.; XU, J.; WANG, X. 2023. Water adsorption properties of microalgae powders: Thermodynamic analysis and structural characteristics. Journal of Stored Products Research. 101:102093. https://doi.org/10.1016/j.jspr.2023.102093
COLLAZOS ESCOBAR, G.A.; GUTIERREZ GUZMAN, N.; VAQUIRO HERRERA, H.A.; AMOROCHO CRUZ, C. 2020. Moisture dynamic sorption isotherms and thermodynamic properties of parchment specialty coffee (Coffea arabica L.). Coffee Science. 15:e151684. https://doi.org/10.25186/.v15i.1684
CÓRDOVA-RAMOS, J.; GLORIO-PAULET, P.; CAMARENA, F.; BRANDOLINI, A.; HIDALGO, A. 2020. Andean lupin (Lupinus mutabilis Sweet): Processing effects on chemical composition, heat damage, and in vitro protein digestibility. Cereal Chemistry. 97(4):827-835. https://doi.org/10.1002/cche.10303
CZUBINSKI, J.; GRYGIER, A.; SIGER, A. 2021. Lupinus mutabilis seed composition and its comparison with other lupin species. Journal of Food Composition and Analysis. 99:103875. https://doi.org/10.1016/j.jfca.2021.103875
DE OLIVEIRA, G.; CORRÊA, P.; OLIVEIRA, A.; BAPTESTINI, F.; VARGAS, G. 2017. Roasting, grinding, and storage impact on thermodynamic properties and adsorption isotherms of Arabica Coffee. Journal of Food Processing and Preservation. 41(2):e12779. https://doi.org/10.1111/jfpp.12779
DUSHKOVA, M.; DIMOV, M.; LAZAROV, L.; PENCHEVA, M.; KOSTOVA, I.; DAMYANOVA, S.; MENKOV, N.; STOYANOVA, A.; ERCISLI, S.; ASSOUGUEM, A.; ALINA, R.; AYVAZ, D.; ULLAH, R.; BARI, A. 2023. Physical, chemical, sorption and microbiological characteristics of fennel fruits. Heliyon. 9(9):e19127. https://doi.org/10.1016/j.heliyon.2023.e19127
ESFE, M.; ESMAILY, R.; KHABAZ, M.; ALIZADEH, A.; PIRMORADIAN, M.; RAHMANIAN, A.; TOGHRAIE, D. 2023. A novel integrated model to improve the dynamic viscosity of MWCNT-Al2O3 (40:60)/Oil 5W50 hybrid nano-lubricant using artificial neural networks (ANNs). Tribology International. 178:108086. https://doi.org/10.1016/j.triboint.2022.108086
FAKHFAKH, R.; MIHOUBI, D.; KECHAOU, N. 2018. Moisture sorption isotherms and thermodynamic properties of bovine leather. Heat and Mass Transfer. 54(4):1163-1176. https://doi.org/10.1007/s00231-017-2223-0
FAN, K.; CHEN, L.; WEI, X.; HE, J.; YAN, F. 2015. Moisture adsorption isotherms and thermodynamic properties of Auricularia auricula. Journal of Food Processing and Preservation. 39(6):1534-1541. https://doi.org/10.1111/jfpp.12379
GARCÍA, J.; CÁRCEL, J.; CLEMENTE, G.; MULET, A. 2008. Water sorption isotherms for lemon peel at different temperatures and isosteric heats. Food Science and Technology. 41(1):18-25. https://doi.org/10.1016/j.lwt.2007.02.010
GROSS, R.; VON BAER, E.; KOCH, F.; MARQUARD, R.; TRUGO, L.; WINK, M. 1988. Chemical composition of a new variety of the Andean lupin (Lupinus mutabilis cv. Inti) with low-alkaloid content. Journal of Food Composition and Analysis. 1(4):353-361. https://doi.org/10.1016/0889-1575(88)90035-X
GULISANO, A.; ALVES, S.; MARTINS, J.; TRINDADE, L. 2019. Genetics and breeding of Lupinus mutabilis: An emerging protein crop. Frontiers in Plant Science. 10:1385. https://doi.org/10.3389/fpls.2019.01385
JO, K.; HONG, K.; SUH, H. 2020. Effects of the whey protein hydrolysates of various protein enzymes on the proliferation and differentiation of 3T3-E1 osteoblasts. Preventive Nutrition and Food Science. 25(1):71-77. https://doi.org/10.3746/pnf.2020.25.1.71
KAROUI, I.; TERRAS, D.; YEDDES, W.; HAMMAMI, M.; ABDERRABBA, M. 2023. Formulation of pasta enriched with protein‐rich lupine (Lupinus mutabilis Sweet) and wheat bran using mixture design approach. Journal of Food Science. 88(10):4001-4014. https://doi.org/10.1111/1750-3841.16736
KIZZIE, N.; DABIE, K.; KYEI, B.; AMPOFO, J.; ZAHN, S.; JAROS, D.; ROHM, H. 2021. Storage temperature of tiger nuts (Cyperus esculentus L) affects enzyme activity, proximate composition and properties of lactic acid fermented tiger nut milk derived thereof. Food Science and Technology. 137:110417. https://doi.org/10.1016/j.lwt.2020.110417
KOÇ, A.; ERBAŞ, M. 2022. Investigation of sorption isotherms of wheat germ for its effect on lipid oxidation. Journal of Food Science. 87(5):2072-2082. https://doi.org/10.1111/1750-3841.16133
KOUA, B.; KOFFI, P.; GBAHA, P.; TOURE, S. 2014. Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta). Journal of Food Science and Technology. 51(9):1711-1723. https://doi.org/10.1007/s13197-012-0687-y
KRISTINSSON, H.; RASCO, B. 2000. Fish protein hydrolysates: Production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition. 40(1):43-81. https://doi.org/10.1080/10408690091189266
KUROZAWA, L.; DE OLIVEIRA, R.; HUBINGER, M.; PARK, K. 2015. Thermodynamic properties of water desorption of papaya. Journal of Food Processing and Preservation. 39(6):2412-2420. https://doi.org/10.1111/jfpp.12491
LANCELOT, E.; FONTAINE, J.; GRUA, J.; LE-BAIL, A. 2021. Effect of long-term storage conditions on wheat flour and bread baking properties. Food Chemistry. 346:128902. https://doi.org/10.1016/j.foodchem.2020.128902
LEWICKI, P.P. 1997. The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science & Technology. 32(6):553-557. https://doi.org/10.1111/j.1365-2621.1997.tb02131.x
LI, X.; HAN, X.; TAO, L.; JIANG, P.; QIN, W. 2021. Sorption equilibrium moisture and isosteric heat of Chinese wheat bran products added to rice to increase its dietary fibre content. Grain & Oil Science and Technology. 4(4):149-164. https://doi.org/10.1016/j.gaost.2021.09.001
LÓPEZ-VIDAÑA, E.; CASTILLO TÉLLEZ, M.; PILATOWSKY FIGUEROA, I.; SANTIS ESPINOSA, L.; CASTILLO-TÉLLEZ, B. 2021. Moisture sorption isotherms, isosteric heat, and Gibbs free energy of stevia leaves. Journal of Food Processing and Preservation. 45(1):e15016. https://doi.org/10.1111/jfpp.15016
MAFTOON AZAD, N.; ALIZADEH, A.; KAZEMIYAN JAHROMI, A.; EHSAN TORKAMANI, A.; BAGHAEI, S.; MIRAZIMI ABARGHUEI, F. 2023. Effects of thermodynamic properties of rice and ambient conditions on moisture migration during storage at naturally ventilated warehouses. Arabian Journal of Chemistry. 16(7):104761. https://doi.org/10.1016/j.arabjc.2023.104761
MALLEK-AYADI, S.; BAHLOUL, N.; KECHAOU, N. 2020. Mathematical modelling of water sorption isotherms and thermodynamic properties of Cucumis melo L. seeds. Food Science and Technology. 131:109727. https://doi.org/10.1016/j.lwt.2020.109727
MARTÍN-SANTOS, J.; VIOQUE, M.; GÓMEZ, R. 2012. Thermodynamic properties of moisture adsorption of whole wheat flour. Calculation of net isosteric heat. International Journal of Food Science & Technology. 47(7):1487-1495. https://doi.org/10.1111/j.1365-2621.2012.02996.x
MCMINN, W.; AL-MUHTASEB, A.; MAGEE, T. 2005. Enthalpy–entropy compensation in sorption phenomena of starch materials. Food Research International. 38(5):505-510. https://doi.org/10.1016/j.foodres.2004.11.004
MCMINN, W.; MAGEE, T. 2003. Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering. 60(2):157-165. https://doi.org/10.1016/S0260-8774(03)00036-0
MCMINN, W.; MCKEE, D.; MAGEE, T. 2007. Moisture adsorption behaviour of oatmeal biscuit and oat flakes. Journal of Food Engineering. 79(2):481-493. https://doi.org/10.1016/j.jfoodeng.2006.02.009
MINISTERIO DE DESARROLLO AGRARIO Y RIEGO. 2023. Producción de tarwi de Perú alcanzó las 16.000 toneladas en 2023. Disponible desde Internet en: https://agraria.pe/noticias/produccion-de-tarwi-de-peru-alcanzo-las-16-000-toneladas-en--36884
MOREIRA, R.; CHENLO, F.; TORRES, M.; VALLEJO, N. 2008. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering. 88(4):514-521. https://doi.org/10.1016/j.jfoodeng.2008.03.011
NOVOA, F. 2019. Simulation of the temperature of barley during its storage in cylindrical silos. Mathematics and Computers in Simulation. 157:1-14. https://doi.org/10.1016/j.matcom.2018.09.004
OUAABOU, R.; ENNAHLI, S.; DI LORENZO, C.; HANINE, H.; BAJOUB, A.; LAHLALI, R.; IDLIMAM, A.; AIT OUBAHOU, A.; MESNAOUI, M. 2021. Hygroscopic properties of sweet cherry powder: Thermodynamic properties and microstructural changes. Journal of Food Quality. 2021(1):3925572. https://doi.org/10.1155/2021/3925572
PANIGRAHI, S.; FIELKE, J.; SINGH, C. 2022. Evaluating isotherms and isosteric heat utilization during sorption characteristics of feed barley. Journal of Stored Products Research. 96:101955. https://doi.org/10.1016/j.jspr.2022.101955
PARK, P.; JUNG, W.; KIM, S.; JUN, S. 2004. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European Food Research and Technology. 219(1):20-26. https://doi.org/10.1007/s00217-004-0882-9
PENTEADO ROSA, D.; RODRIGUES EVANGELISTA, R.; BORGES MACHADO, A.; RIBEIRO SANCHES, M.; TELIS-ROMERO, J. 2021. Water sorption properties of papaya seeds (Carica papaya L.) formosa variety: An assessment under storage and drying conditions. Food Science and Technology. 138:110458. https://doi.org/10.1016/j.lwt.2020.110458
ROSA, G.; MORAES, M.; PINTO, L. 2010. Moisture sorption properties of chitosan. Food Science and Technology. 43(3):415-420. https://doi.org/10.1016/j.lwt.2009.09.003
SÁNCHEZ-RIAÑO, A.; SOLANILLA-DUQUE, J.; VÁQUIRO-HERERA, H. 2022. Desorption and thermophysical properties of feijoa pulp as affected by temperature and moisture content. International Journal of Food Properties. 25(1):2089-2106. https://doi.org/10.1080/10942912.2022.2125008
SÁNCHEZ-TORRES, E.; ABRIL, B.; BENEDITO, J.; BON, J.; GARCÍA-PÉREZ, J. 2021. Water desorption isotherms of pork liver and thermodynamic properties. Food Science and Technology. 149:111857. https://doi.org/10.1016/j.lwt.2021.111857
SAWHNEY, I.; SARKAR, B.; PATIL, G. 2011. Moisture sorption characteristics of dried acid casein from buffalo skim milk. Food Science and Technology. 44(2):502-510. https://doi.org/10.1016/j.lwt.2010.07.009
SIMIONIUC, D.; SIMIONIUC, V.; TOPA, D.; VAN DEN BERG, M.; PRINS, U.; BEBELI, P. J.; GABUR, I. 2021. Assessment of andean lupin (Lupinus mutabilis) genotypes for improved frost tolerance. Agriculture. 11(2):155. https://doi.org/10.3390/agriculture11020155
SOARES SILVA, K.; POLACHINI, T.; LUNA-FLORES, M.; LUNA-SOLANO, G.; RESENDE, O.; TELIS-ROMERO, J. 2021. Sorption isotherms and thermodynamic properties of wheat malt under storage conditions. Journal of Food Process Engineering. 44(9). https://doi.org/10.1111/jfpe.13784
TOĞRUL, H.; ARSLAN, N. 2007. Moisture sorption isotherms and thermodynamic properties of walnut kernels. Journal of Stored Products Research. 43(3):252-264. https://doi.org/10.1016/j.jspr.2006.06.006
TOLABA, M.; PELTZER, M.; ENRIQUEZ, N.; LUCÍA POLLIO, M. 2004. Grain sorption equilibria of quinoa grains. Journal of Food Engineering. 61(3):365-371. https://doi.org/10.1016/S0260-8774(03)00143-2
TUNÇ, S.; DUMAN, O. 2007. Thermodynamic properties and moisture adsorption isotherms of cottonseed protein isolate and different forms of cottonseed samples. Journal of Food Engineering. 81(1):133-143. https://doi.org/10.1016/j.jfoodeng.2006.10.015
VALDEZ-NIEBLA, J.; PAREDES-LÓPEZ, O.; VARGAS-LÓPEZ, J.M.; HERNÁNDEZ-LÓPEZ, D. 1993. Moisture sorption isotherms and other physicochemical properties of nixtamalized amaranth flour. Food Chemistry. 46(1):19-23. https://doi.org/10.1016/0308-8146(93)90069-R
WAN, J.; DING, Y.; ZHOU, G.; LUO, S.; LIU, C.; LIU, F. 2018. Sorption isotherm and state diagram for indica rice starch with and without soluble dietary fiber. Journal of Cereal Science. 80:44-49. https://doi.org/10.1016/j.jcs.2018.01.003
ZHU, G.; JIN, Q.; LIU, Y.; LIN, Y.; WANG, J.; LI, X. 2021. Moisture sorption and thermodynamic properties of Camellia oleifera seeds as influenced by oil content. International Journal of Agricultural and Biological Engineering. 14(1):251-258. https://doi.org/10.25165/j.ijabe.20211401.5457