Evaluación de la dinámica de impregnación al vacío de cogollos de palma de iraca

Evaluation of the dynamics of vacuum impregnation of iraca palm buds

Contenido principal del artículo

Misael Cortes-Rodríguez
Rodrigo Hoyos-Sánchez
Leidy Areiza-Restrepo
Cristian Camilo Ossa-Cardona

Resumen

Aunque los cogollos de la palma de iraca pueden ser empleados como fuente para la alimentación humana, la mayoría de la información disponible es para la producción de artesanías. Se evaluó la respuesta a la impregnación al vacío (IV) de cogollos frescos de palma de iraca (CFPI), con una solución isotónica de NaCl (0,6 %). Se utilizó la metodología de superficie de respuesta, con un diseño central compuesto (a=1), considerando las siguientes variables independientes: el diámetro de los cogollos (10-15 mm), el tiempo en la etapa de vacío T1 (3-5 minutos) a presión de vacío (4.1 kPa) y el tiempo en la etapa a presión atmosférica local (85,32 kPa), T2 (3-5 min). Las variables dependientes que se tomaron en cuenta fueron fracción volumétrica de impregnación en la etapa de vacío (X1), deformación volumétrica final (g), fracción volumétrica final (X) y porosidad eficaz (Ee). La dinámica de la IV del CFPI identificó que el proceso comporta una expansión volumétrica en la matriz, la cual, finalmente, contribuye a la transferencia de masa del líquido isotónico al interior de la estructura. La microestructura porosa del CFPI es compatible con el proceso de IV, permitiendo los siguientes parámetros de impregnación: g1 (0,451%), X1 (11,457%), g (2,569%), X (17,386%) y Ee (17,036%). La respuesta a la IV en los CFPI identifica a esta matriz alimentaria como adecuada, para la incorporación de componentes fisiológicamente activos.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ASSIS, F.R.; RODRIGUES, L.G.G.; TRIBUZI, G.; DE SOUZA, P.G.; CARCIOFI, B.A.M.; LAURINDO, J.B. 2019. Fortified apple (Malus spp., var. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying. LWT. 113:108298. https://doi.org/10.1016/j.lwt.2019.108298 DOI: https://doi.org/10.1016/j.lwt.2019.108298

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS - AOAC. 1990. Official methods of analysis. 15th edition. Association of Official Analytical Chemists. Association of Official Analytical Chemist (Washington). 1298p.

AYKIN-DINÇER, E. 2021. Application of ultrasound-assisted vacuum impregnation for improving the diffusion of salt in beef cubes. Meat Science. 176:108469. https://doi.org/10.1016/j.meatsci.2021.108469 DOI: https://doi.org/10.1016/j.meatsci.2021.108469

BECERRA, J.; ESCOBAR, R.; SERNA, Y. 2004. Estudio del cultivo bajo cubierta de cuatro especies vegetales de la huerta Chocoana en el municipio de Quibdó. Revista Institucional Universidad Tecnológica del Chocó. 21:24-28.

CHIRALT, A.; FITO, P.; BARAT, J.M.; ANDRÉS, A.; GONZÁLEZ MARTÍNEZ, C.; ESCRICHE, I.; CAMACHO, M.M. 2001. Use of vacuum impregnation in food salting process. Journal Food Engineering. 49:129-135. https://doi.org/10.1016/S0260-8774(00)00219-3 DOI: https://doi.org/10.1016/S0260-8774(00)00219-3

CORTEZ‐LATORRE, J.D.; FAICÁN, M.; PIROVANI, M.; PIAGENTINI, A. 2021. Improving fresh‐cut apple quality and healthy potential‐related attributes through mild vacuum impregnation process. Journal of Food Processing and Preservation. 45(12):e15995. https://doi.org/10.1111/jfpp.15995 DOI: https://doi.org/10.1111/jfpp.15995

DEROSSI, A.; DE PILLI, T.; SEVERINI, C. 2012. The Application of vacuum impregnation techniques in food industry. En: Valdez, B. Scientific, Health and Social Aspects of the Food Industry. IntechOpen. p.26-56. https://doi.org/10.5772/31435 DOI: https://doi.org/10.5772/31435

DEROSSI, A.; FRANCAVILLA, M., MONTELEONE, M.; CAPORIZZI, R.; SEVERINI, C. 2021. From biorefinery of microalgal biomass to vacuum impregnation of fruit. A multidisciplinary strategy to develop innovative food with increased nutritional properties. Innovative Food Science and Emerging Technologies. 70:102677. https://doi.org/10.1016/j.ifset.2021.102677 DOI: https://doi.org/10.1016/j.ifset.2021.102677

DUARTE-CORREA, Y.; GRANDA-RESTREPO, D.; CORTÉS, M.; VEGA-CASTRO, O. 2020. Potato snacks added with active components: effects of the vacuum impregnation and drying processes. Journal of Food Science and Technology. 57:1523-1534. https://doi.org/10.1007/s13197-019-04188-5 DOI: https://doi.org/10.1007/s13197-019-04188-5

FITO, P.; PASTOR, R. 1994. Non-diffusional mechanism occurring during vacuum osmotic dehydration (VOD). Journal of Food Engineering. 21: 513-519. https://doi.org/10.1016/0260-8774(94)90070-1 DOI: https://doi.org/10.1016/0260-8774(94)90070-1

FITO, P. 1994. Modelling of vacuum osmotic dehydrattion of foods. Journal of Food Engineering. 22:313-328. https://doi.org/10.1016/0260-8774(94)90037-X DOI: https://doi.org/10.1016/B978-1-85861-037-5.50022-9

FITO, P.; ANDRÉS, A.; CHIRALT, A.; PARDO, P. 1996. Coupling of hydrodynamic mechanism and deformation-relaxion phenomena during vacuum treatments in solid porous food-liquid systems. Journal of Food Engineering. 27:229-240. https://doi.org/10.1016/0260-8774(95)00005-4 DOI: https://doi.org/10.1016/0260-8774(95)00005-4

GONZALEZ, CH.; FUENTES, C.; ANDRÉS, A.; CHIRALT, A.; FITO, P. 1999. Effectiveness of vacuum impregnation brining of Manchego-type curd. International Dairy Journal. 9:143-148. DOI: https://doi.org/10.1016/S0958-6946(99)00035-7

GONZÁLEZ-MARTÍNEZ, C.; CHAFER, M.; FITO, P.; CHIRALT, A. 2002. Development of salt profiles on Manchego type cheese during brining. Influence of vacuum pressure. Journal of Food Engineering, 53:67-63. https://doi.org/10.1016/S0260-8774(01)00141-8 DOI: https://doi.org/10.1016/S0260-8774(01)00141-8

JIMÉNEZ-MÉNDEZ, G.; GAMARRA-PÉREZ, A.; TRONCOSO-PALACIO, A. 2023. Aplicando control calidad en la manufactura de manteles individuales de palma de iraca. Boletín de Innovación, Logística y Operaciones. 5(1):28-39. https://doi.org/10.17981/bilo.5.1.2023.03 DOI: https://doi.org/10.17981/bilo.5.1.2023.03

KRĘCISZ, M.; KOLNIAK-OSTEK, J.; ŁYCZKO, J.; STĘPIEŃ, B. 2023. Evaluation of bioactive compounds, volatile compounds, drying process kinetics and selected physical properties of vacuum impregnation celery dried by different methods. Food Chemistry. 413:135490. https://doi.org/10.1016/j.foodchem.2023.135490 DOI: https://doi.org/10.1016/j.foodchem.2023.135490

LE, D.; KONSUE, N. 2021. Mass transfer behavior during osmotic dehydration and vacuum impregnation of “phulae” pineapple and the effects on dried fruit quality. Current Research in Nutrition and Food Science. 9(1):308–319. https://doi.org/10.12944/CRNFSJ.9.1.29 DOI: https://doi.org/10.12944/CRNFSJ.9.1.29

LUO, W.; TAPPI, S.; PATRIGNANI, F.; ROMANI, S.; LANCIOTTI, R.; ROCCULI, P. 2019. Essential rosemary oil enrichment of minimally processed potatoes by vacuum-impregnation. Journal of Food Science and Technology. 56(10):4404–4416. https://doi.org/10.1007/s13197-019-03935-y DOI: https://doi.org/10.1007/s13197-019-03935-y

MARCHETTI, M.D.; TOMAC, A.; YEANNES, M.I.; GARCIA LOREDO, A.B. 2022. Comprehensive analysis of vacuum application in desalting lean white fish to develop a highly acceptable ready-to-use product. LWT. 163:113527. https://doi.org/10.1016/j.lwt.2022.113527 DOI: https://doi.org/10.1016/j.lwt.2022.113527

MARTÍNEZ NAVARRETE, N.; ANDRÉS GRAU, A.; CHIRALT BOIX, A.; MAUPOEY, P.F. 1998. Termodinámica y cinética de sistemas alimento y entorno. Universidad Politécnica de Valencia. 374p.

MIERZWA, D.; SZADZIŃSKA, J.; GAPIŃSKI, B.; RADZIEJEWSKA-KUBZDELA, E.; BIEGAŃSKA-MARECIK, R. 2022. Assessment of ultrasound-assisted vacuum impregnation as a method for modifying cranberries’ quality. Ultrasonics Sonochemistry. 89:106117. https://doi.org/10.1016/j.ultsonch.2022.106117 DOI: https://doi.org/10.1016/j.ultsonch.2022.106117

MIERZWA, D.; SZADZIŃSKA, J.; RADZIEJEWSKA-KUBZDELA, E.; LENARTOWICZ, T. 2023. Effect of ultrasound on mass transfer during vacuum impregnation of low-porous food materials on the example of potato (Solanum Tuberosum L.). Chemical Engineering and Processing - Process Intensification. 188:109375. https://doi.org/10.1016/j.cep.2023.109375 DOI: https://doi.org/10.1016/j.cep.2023.109375

NERI, L.; SANTARELLI, V.; DI MATTIA, C.D.; SACCHETTI, G.; FAIETA, M.; MASTROCOLA, D.; PITTIA, P. 2019. Effect of dipping and vacuum impregnation pretreatments on the quality of frozen apples: A comparative study on organic and conventional fruits. Journal of Food Science. 84(4):798-806. https://doi.org/10.1111/1750-3841.14489 DOI: https://doi.org/10.1111/1750-3841.14489

OSSA MONTOYA, V.; GIL, M.; CORTÉS, M. 2023. Impregnación al vacío y sus parámetros operativos: una revisión. TecnoLógicas. 26(56):e2605. https://doi.org/10.22430/22565337.2605 DOI: https://doi.org/10.22430/22565337.2605

PANAYAMPADAN, A.S.; ALAM, M.S.; ASLAM, R.; KAUR, J. 2022. Vacuum impregnation process and its potential in modifying sensory, physicochemical and nutritive characteristics of food products. Food Engineering Reviews. 14(2):229-256. https://doi.org/10.1007/s12393-022-09312-4 DOI: https://doi.org/10.1007/s12393-022-09312-4

PANDISELVAM, R.; TAK, Y.; OLUM, E.; SUJAYASREE, O.J.; TEKGÜL, Y.; ÇALIŞKAN KOÇ, G.; KAUR, M.; NAYI, P.; KOTHAKOTA, A.; KUMAR, M. 2022. Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of Texture Studies. 53(6):737-762. https://doi.org/10.1111/jtxs.12643 DOI: https://doi.org/10.1111/jtxs.12643

PAVIA, M.; TRUJILLO, A.J.; SENDRA, E.; GUAMIS, B.; FERRAGUT, V. 2000. Free fatty acid content of Manchego-type cheese salted by brine vacuum impregnation. International Dairy Journal 10:563-568. https://doi.org/10.1016/S0958-6946(00)00083-2 DOI: https://doi.org/10.1016/S0958-6946(00)00083-2

RAMÍREZ, N.; VEGA‐CASTRO, O.; SIMPSON, R.; RAMIREZ, C.; NUÑEZ, H. 2021. Effect of pulsed vacuum and laser microperforations on the potential acceleration of chicken meat marination. Journal of Food Process Engineering. 44(3):e13627. https://doi.org/10.1111/jfpe.13627 DOI: https://doi.org/10.1111/jfpe.13627

REZENDE ABRAHÃO, F.; GOMES CORRÊA, J.L. 2021. Osmotic dehydration: More than water loss and solid gain. Critical Reviews in Food Science and Nutrition. 63(17). https://doi.org/10.1080/10408398.2021.1983764 DOI: https://doi.org/10.1080/10408398.2021.1983764

SALVATORI, D.; ANDRÉS, A.; CHIRALT, A.; FITO, P. 1998. THE Response of some properties of fruits to vacuum impregnation. Journal of Food Process Engineering. 21(1):59-73. https://doi.org/10.1111/j.1745-4530.1998.tb00439.x DOI: https://doi.org/10.1111/j.1745-4530.1998.tb00439.x

SANTARELLI, V.; NERI, L.; MOSCETTI, R.; DI MATTIA, C.D.; SACCHETTI, G.; MASSANTINI, R.; PITTIA, P. 2021. Combined use of blanching and vacuum impregnation with trehalose and green tea extract as pre-treatment to improve the quality and stability of frozen carrots. Food and Bioprocess Technology. 14(7):1326–1340. https://doi.org/10.1007/s11947-021-02637-8 DOI: https://doi.org/10.1007/s11947-021-02637-8

THAKUR, M.; MODI, V.K. 2020. Emerging technologies in food science. Focus on the developing world. Springer Singapore. 287. https://doi.org/10.1007/978-981-15-2556-8 DOI: https://doi.org/10.1007/978-981-15-2556-8

TOMAC, A.; RODRÍGUEZ MALLO, S.; PÉREZ, S.; GARCÍA LOREDO, A.; YEANNES, M.I. 2020. Salado húmedo de filetes de merluza mediante impregnación al vacío. La Industria Cárnica Latinoamericana. 215:56-61.

Citado por