Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación

Optimization of a cape gooseberry colloidal system for the micro-encapsulation process

Contenido principal del artículo

Soany Eraso-Grisales
Misael Cortés-Rodríguez

Resumen

La uchuva es una fruta que contiene una variedad de compuestos activos como vitaminas A, B y C, proteínas, minerales, tocoferoles, carotenoides, entre otros que otorgan beneficios a la salud. El objetivo de esta investigación fue optimizar experimentalmente la formulación de un sistema coloidal a base de uchuva, goma arábiga (GA) y maltodextrina (MD) (SCU+GA+MD), con fines de ser utilizado posteriormente en un proceso de microencapsulación por secado por aspersión, y así, proteger y conservar sus componentes activos. Se utilizó un homogenizador por cizalla tipo molino coloidal para la preparación del sistema coloidal y el diseño de la formulación se realizó utilizando un diseño experimental central compuesto cara centrada (a = 1), considerando las variables independientes: GA (1,0-3,0 %) y MD (9,5-13,5 %) y las variables dependientes: sólidos totales (TS), viscosidad (µ), potencial zeta (ζ), tamaño de partícula (D [4,3]), fenoles totales (TF), capacidad antioxidante (métodos DPPH y ABTS). La formulación óptima se obtuvo con una formulación que contenía MD: 12,3 % y GA: 3,0 %, donde las variables dependientes fueron: TS: 32.2±0.1%, μ: 581,0±7,8 cP, ζ: -22.6±0.6 mV, D[4,3]: 77.9±2.0 µm, TF: 97,2±1,1 mg GAE 100 g-1, DPPH: 12,6±1,4 mg TE 100 g-1, ABTS: 13,5±0,6 mg TE 100 g-1. La validación experimental del proceso de homogenización por cizalla de un sistema coloidal integral de uchuva permitió garantizar su estabilidad fisicoquímica con un importante contenido de sólidos, y adecuado para ser utilizado en procesos de microencapsulación por secado por aspersión.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS- AOAC. 2012. Official methods of analysis. En: Helrich, K. (ed.). 19 edición. AOAC. Arlington.

BABBAR, N.; AGGARWAL, P.; OBEROI, H.S. 2015. Effect of addition of hydrocolloids on the colloidal stability of litchi (Litchi chinensis Sonn) juice. Journal of Food Processing and Preservation. 39(2):183-189. https://doi.org/10.1111/jfpp.12220 DOI: https://doi.org/10.1111/jfpp.12220

CANO-SARMIENTO, C.; TÉLLEZ-MEDINA, D.I.; VIVEROS-CONTRERAS, R.; CORNEJO-MAZÓN, M.; FIGUEROA-HERNÁNDEZ, C.Y.; GARCÍA-ARMENTA, E.; ALAMILLA-BELTRÁN, L.; GARCÍA, H.S.; GUTIÉRREZ, G.F. 2018. Zeta potential of food matrices. Food Engineering Reviews. 10(3):113–138. https://doi.org/10.1007/s12393-018-9176-z DOI: https://doi.org/10.1007/s12393-018-9176-z

DAHDOUH, L.; DELALONDE, M.; RICCI, J.; RUIZ, E.; WISNEWSKI, C. 2018. Influence of high shear rate on particle size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies. 48:304–312. https://doi.org/10.1016/j.ifset.2018.07.006 DOI: https://doi.org/10.1016/j.ifset.2018.07.006

DAHDOUH, L.; WISNIEWSKI, C.; RICCI, J.; VACHOUD, L.; DORNIER, M.; DELALONDE, M. 2016. Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentrations. Journal of Food Engineering. 174:15-20. https://doi.org/10.1016/j.jfoodeng.2015.11.008 DOI: https://doi.org/10.1016/j.jfoodeng.2015.11.008

DE LOS RIOS, C.; CORTÉS RODRÍGUEZ, M.; ARANGO TOBÓN, J.C. 2021. Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. Journal of Food Processing and Preservation. 15498:1-11. https://doi.org/10.1111/jfpp.15498 DOI: https://doi.org/10.1111/jfpp.15498

ETZBACH, L.; PFEIFFER, A.; SCHIEBER, A.; WEBER, F. 2019. Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology. 100:69-74. https://doi.org/10.1016/j.lwt.2018.10.032 DOI: https://doi.org/10.1016/j.lwt.2018.10.032

ETZBACH, L.; PFEIFFER, A.; WEBER, F.; SCHIEBER, A. 2018. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry. 245:508–517. https://doi.org/10.1016/j.foodchem.2017.10.120 DOI: https://doi.org/10.1016/j.foodchem.2017.10.120

GALLÓN BEDOYA, M.; CORTÉS RODRÍGUEZ, M.; GIL, J.H. 2020. Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. Journal of Food Processing and Preservation. 44(9):1-10. https://doi.org/10.1111/jfpp.14705 DOI: https://doi.org/10.1111/jfpp.14705

GUEVARA COLLAZOS, A.; VILLAGRAN MUNAR, E.; VELASQUEZ AYALA, F.; GONZÁLEZ VELANDIA, K. 2019. Evaluación del comportamiento poscosechade uchuva provenientes de sistemas de producción convencionales y agroecológicos. Revista Mexicana de Ciencias Agrícolas. 10(6):1273-1285. https://doi.org/10.29312/remexca.v10i6.1492 DOI: https://doi.org/10.29312/remexca.v10i6.1492

HANDIQUE, J.; BORA, S.J.; SIT, N. 2019. Optimization of banana juice extraction using a combination of enzymes. Journal of Food Science and Technology. 56(8):3732-3743. https://doi.org/10.1007/s13197-019-03845-z DOI: https://doi.org/10.1007/s13197-019-03845-z

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN - ICONTEC. 1999. Norma técnica Colombiana – NTC 4580. Frutas fresas. Uchuva. Especificaciones. Icontec. Bogotá, D.C., Colombia. 17p. Disponible desde Internet en: https://tienda.icontec.org/gp-frutas-frescas-uchuva-especificaciones-del-empaque-ntc5166-2003.html

ISLAM SHISHIR, M.R.; CHEN, W. 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology. 65:49-67. https://doi.org/10.1016/j.tifs.2017.05.006 DOI: https://doi.org/10.1016/j.tifs.2017.05.006

LEE, J.K.M.; TAIP, F.S.; ABDULLAH. Z. 2018. Effectiveness of additives in spray drying performance: a review. Food Research. 2(6): 486 – 499. https://doi.org/10.26656/fr.2017.2(6).134 DOI: https://doi.org/10.26656/fr.2017.2(6).134

MARÍN-ARANGO, Z.T.; CORTES-RODRÍGUEZ, M.; MONTOYA-CAMPUZANO, O.I.; ARANGO-TOBÓN, J.C. 2019. Viability of Lactobacillus casei ATCC 393 and properties in andean blackberry suspensions with probiotic and prebiotic characteristics. Revista DYNA. 86(210):179–186. https://doi.org/10.15446/dyna.v86n210.72929 DOI: https://doi.org/10.15446/dyna.v86n210.72929

MATUSIAK, J.; GRZĄDKA, E. 2017. Stability of colloidal systems - a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemistry. 72(1):33-45. https://doi.org/10.17951/aa.2017.72.1.33 DOI: https://doi.org/10.17951/aa.2017.72.1.33

MOELANTS, K.R.N.; CARDINAELS, R.; VAN BUGGENHOUT, S.; VAN LOEY, A. M.; MOLDENAERS, P.; HENDRICKX, M.E. 2014. A Review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions. Comprehensive Reviews in Food Science and Food Safety. 13(3):241–260. https://doi.org/10.1111/1541-4337.12059 DOI: https://doi.org/10.1111/1541-4337.12059

MOKHTAR, S.M.; SWAILAM, H.M.; EMBABY, H.E.S. 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry. 248:1-7. https://doi.org/10.1016/j.foodchem.2017.11.117 DOI: https://doi.org/10.1016/j.foodchem.2017.11.117

OLIVARES-TENORIO, M.L.; DEKKER, M.; VERKERK, R.; VAN BOEKEL, M.A.J.S. 2016. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology. 57(Part A):83-92. https://doi.org/10.1016/j.tifs.2016.09.009 DOI: https://doi.org/10.1016/j.tifs.2016.09.009

OZTURK, A.; ÖZDEMİR, Y.; ALBAYRAK, B.; SİMŞEK, M.; YILDIRIM, K.C. 2017. Some nutrient characteristics of goldenberry (Physalis Peruviana L.) cultivar candidate from Turkey. Scientific Papers Series B Horticulture. 61:293-297.

PETKOVA, N.T.; POPOVA, V.T.; IVANOVA, T.A.; MAZOVA, N.N.; PANAYOTOV, N.D.; STOYANOVA, A. 2021. Nutritional composition of different cape gooseberry genotypes (Physalis peruviana L.) – a comparative study. Food Research. 5(4):191-202. DOI: https://doi.org/10.26656/fr.2017.5(4).123

PIORKOWSKI, D.T.; MCCLEMENTS, D.J. 2014. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids. 42:5-41. https://doi.org/10.1016/j.foodhyd.2013.07.009 DOI: https://doi.org/10.1016/j.foodhyd.2013.07.009

SAAVEDRA-LEOS, M.; LEYVA-PORRAS, C.; ALVAREZ-SALAS, C.; LONGORIA-RODRÍGUEZ, F.; LÓPEZ-PABLOS, A.L.; GONZÁLEZ-GARCÍA, R.; PÉREZ-URIZAR, J. 2018. Obtaining orange juice–maltodextrin powders without structure collapse based on the glass transition temperature and degree of polymerization. CyTA - Journal of Food. 16(1):61-69. https://doi.org/10.1080/19476337.2017.1337048 DOI: https://doi.org/10.1080/19476337.2017.1337048

SANG-NGERN, M.; YOUN, U.J.; PARK, E.J.; KONDRATYUK, T.P.; SIMMONS, C.J.; WALL, M.M.; RUF, M.; LORCH, S.E.; LEONG, E.; PEZZUTO, J.M.; CHANG, L.C. 2016. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters. 26(12):2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077 DOI: https://doi.org/10.1016/j.bmcl.2016.04.077

SANTOS ARAUJO, H.C.; JESUS, M.S.; LEITE NETA, M.T.S.; GUALBERTO, N.C.; MATOS, C.M.S.; RAJAN, M.; RAJKUMAR, G.; NOGUEIRA, J.P.; NARAIN, N. 2020. Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology. 39(3):392-404. https://doi.org/10.1080/07373937.2020.1839487 DOI: https://doi.org/10.1080/07373937.2020.1839487

SANTOS, D.; MAURÍCIO, A.C.; SENCADAS, V.; SANTOS, J.D.; FERNANDES, M.H.; GOMES, P.S. 2017. Spray drying: An Overview. En: Pignatello, R.; Musumeci, T. (eds). Biomaterials - Physics and chemistry. New Edition. InTechOpen. p.9-35. https://doi.org/10.5772/intechopen.72247 DOI: https://doi.org/10.5772/intechopen.72247

TAHERI, A.; JAFARI, S.M. 2019. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in colloid and interface Science. 269:277-295. https://doi.org/10.1016/j.cis.2019.04.009 DOI: https://doi.org/10.1016/j.cis.2019.04.009

TAMNAK, S.; MIRHOSSEINI, H.; TAN, C.P.; GHAZALI, H.M.; MUHAMMAD, K. 2016. Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids. 56:405-416. https://doi.org/10.1016/j.foodhyd.2015.12.033 DOI: https://doi.org/10.1016/j.foodhyd.2015.12.033

TUAN AZLAN, T.N.N.; HAMZAH, Y.; MOHD ABD MAJID, H.A. 2020. Effect of gum arabic (Acacia senegal) addition on physicochemical properties and sensory acceptability of roselle juice. Food Research. 4(2):449-458. https://doi.org/10.26656/fr.2017.4(2).293 DOI: https://doi.org/10.26656/fr.2017.4(2).293

VEGA-GÁLVEZ, A.; LÓPEZ, J.; TORRES-OSSANDÓN, M.J.; GALOTTO, M.J.; PUENTE-DÍAZ, L.; QUISPE-FUENTES, I.; DI SCALA, K. 2014. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT-Food Science and Technology. 58(2):519-526. https://doi.org/10.1016/j.lwt.2014.04.010 DOI: https://doi.org/10.1016/j.lwt.2014.04.010

WAN, Y.J.; XU, M.M.; GILBERT, R.G.; YIN, J.Y.; HUANG, X.J.; XIONG, T.; XIE, M.Y. 2018. Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids. 89:623-630. https://doi.org/10.1016/j.foodhyd.2018.11.017 DOI: https://doi.org/10.1016/j.foodhyd.2018.11.017

WARDY, W.; PUJOLS MARTÍNEZ, K.D.; XU, Z.; NO, H.K.; PRINYAWIWATKUL, W. 2014. Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology. 55(1):67-73. https://doi.org/10.1016/j.lwt.2013.07.013 DOI: https://doi.org/10.1016/j.lwt.2013.07.013

ZHU, D.; SHEN, Y.; WEI, L.; XU, L.; CAO, X.; LIU, H.; LI, J. 2020. Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry. 328:126967. https://doi.org/10.1016/j.foodchem.2020.126967 DOI: https://doi.org/10.1016/j.foodchem.2020.126967

ZHU, F. 2018. Interactions between cell wall polysaccharides and polyphenols. Critical Reviews in Food Science and Nutrition. 58(11):1808-1831. https://doi.org/10.1080/10408398.2017.1287659 DOI: https://doi.org/10.1080/10408398.2017.1287659

Citado por