Evolución de interacciones parásito - hospedero: coevolución, selección sexual y otras teorías propuestas

Contenido principal del artículo

Autores

Guillermo Rico Hernández

Resumen

Esta revisión resume los modelos teóricos de interacciones parásito-hospedero que se encuentran disponibles en la literatura científica. Se revisaron publicaciones internacionales en revistas especializadas sobre parasitología y ecología. Estudios teóricos y prácticos de las interacciones parásitohospedero, en algunos casos, sugieren variaciones evolutivas y ecológicas. La evolución de las interacciones parásitohospedero no se limita a consideraciones coevolutivas, sino que tiene efectos directos sobre caracteres de historia de vida del hospedero, evolución del sexo, comportamiento reproductivo, selección sexual e, incluso, sobre transferencia génica. El estudio de las interacciones parásito-hospedero, como fuerzas modeladoras de la evolución y ecología de los organismos, tiene gran importancia, pues aunque, actualmente, carece de evidencia firme en la práctica en algunas de sus áreas y permanece como difícil de demostrar, es clara de manera teórica.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. ADAMO, S.A. 1999. Evidence for adaptative changes in egg laying in cricket exposed to bacteria and parasites. Animal Behaviour. 57:117-124.

2. AGRAWAL, F.A.; LIVELY, C.M. 2001. Parasites and the evolution of self- fertilization. Evolution. 55(5):869-879.

3. ALLISON, A.C. 1982. Coevolution between host and infectious diseases agents and its effects on virulence. En : Anderson, R.M.; May, R.M. eds. Population biology of infectious diseases. Oxford University Press, (Oxford, USA). p.245-268.

4. ANDERSON, R.M. 1991. Populations and infectious diseases: ecology or epidemiology? J. Animal Ecol. 60:1-50.

5. BAER, B.; SCHMID-HEMPEL, P. 1999. Experimental variation in polyandry affects a parasite loads and fitness in a bumblebee. Nature. 397:151-154.

6. BAER, B.; SCHMID-HEMPEL, P. 2001. Unexpected consequences of polyandry for parasitism and fitness in the bumblebee (Bombus terrestris). Evolution. 55(8):1639-1643.

7. BARLOW, N.D. 1996. The ecology of wildlife disease control: simple models revisited. J. Appl. Ecol. 33:303- 314.

8. BEGON, M.; HARPER, J.L.; TOWNSEND, C.R. 1986. Ecology: Individuals, populations and communities. Blackwell Science Publications. (New York, USA). 486p.

9. BENÍTEZ, H.; BRIONES, R.; JEREZ, V. 2008. Asimetría fluctuante en dos poblaciones de Ceroglossus chilensis (Eschscholtz, 1829) (Coleoptera: Carabeidae) en el agroecosistema Pinus radiata D. Don región del Bio- Bio, Chile. Gayana. 72(2):131-139.

10. BOOTS, M.; SASAKI, A. 2001. Parasite-driven extinction in spatially explicit host-parasite systems. Am. Naturalist. 34(12):706-713.

11. BUSH, A.O.; FERNÁNDEZ, J.C.; ESCH, G.W.; SEED, J.R. 2001. Parasitism. The diversity and ecology of animal parasites. Cambridge University Press. (Cambridge, UK). 566p.

12. CARIUS, H.J.; LITTLE, T.J.; EBERT, D. 2001. Genetic variation in host-parasite association: potencial for coevolution and frequency-dependent selection. Evolution. 55(6):1136-1145.

13. CUNNINGHAM, A.; DASZAK, P.; RODRÍGUEZ, J. 2003. Pathogen pollution: defining a parasitological threat to biodiversity conservation. J. Parasitol. 89 (Suppl.):S78-S83.

14. DAMIAN, R.T. 1979. Molecular mimicry in biology adaptation. En: Nickol, B.B. ed. Host-Parasite Interfaces. Academic Press. (USA). p.103-126.

15. DASZAK, P.; CUNNINGHAM, A.; HYATT, A. 2003. Infectious disease and amphibian population declines. Diversity and Distributions. 9:141-150.

16. DYBDAHL, M.F.; LIVELY, C.M. 1998. Host-parasite coevolution: Evidence for rare advantage and time lagged selection in a natural polulation. Evolution. 52:1057-1066.

17. DOBSON, A.P.; HUDSON, P.J. 1992. Regulation and stability of a free-living host-parasite system: Trichostrongylus tenuis in red grouse. II. Population models. J. Anim. Ecol. 61:487-498.

18. EWALD, P.W. 1995. The evolution of virulence: a unifying link between parasitology and ecology. J. Parasitol. 81:659-669.

19. F UTUYMA, D.J. 1986. Evolutionary Biology. Sinauer Associates. (USA).

20. GANDON, S.; AGNEW, P.; MICHALAKIS, Y. 2002. Coevolution between parasite virulence and host lifehistory traits. Am. Natural. 160(3):374-387.

21. GANDON, S.; VAN ZANDT, P.A. 1998. Local adaptation and host-parasite interactions. Trends in Ecology and Evolution. 13(6):214-216.

22. GRETHER, G.F. 1997. Survival cost of an intrasexual selected ornament in a damselfly. Proc. Royal Soc. London 264:207-210.

23. GULLAND, F.M.D. 1998. Impact of infectious diseases of wild animal population - a review. En: Grenfell, B.T.; Dobson, A.P. eds. Ecology of infectious diseases in natural populations. Cambridge University Press. (Cambridge, U.K). p.20-51.

24. HAFNER, M.S.; NADLER, S.A. 1990. Cospeciation in host-parasite assemblages: comparative analysis of rates of evolution and timing of cospeciation events. Syst. Zool. 39:192-204.

25. HAMILTON, W.D.; ZUK, M. 1982. Heritable true fitness and bright birds: a role for parasites? Science. 218:384- 387.

26. HOUCK, M.A. 1994. Mites as potencial horizontal transfer vector of eukatyotic mobile genes: Proctolaelaps regalis as a model. J. Parasitol. 80:457-469.

27. HOWELL, M.J. 1985. Gene exchange between hosts and parasites. Internal J. Parasitol. 15: 597-600.

28. IWAMURA, Y.; IRIE, Y.; KOMINAMI, R.; NARA, T.; YASURAOKA, K. 1991. Existence of host-related DNA sequences in the schistosome genome. Parasitol. 102:397-403.

29. JOHNSON, S.G. 2000. Population structure, parasitism, and survivorship of sexual and autodiploid parthenogenetic Campeloma limun. Evolution. 54(1):167-175.

30. KELLY, A.; HATCHER, M.J.; EVANS, L.; DUNN, A.M. 2001. Mate choice and mate guarding under the influence of a vertically transmited, parasitic sex ratio distorter. Anim. Behaviour. 61:763-770.

31. KIDWELL, M.G. 1993. Lateral transfer in natural populations of eukariotes. Ann. Rev. Genetics. 27:235- 256.

32. KOSKELA, T. 2002. Variation in life-history traits among Urtica dioica populations with different history in parasitism by the holoparasitic plant Cuscuta europeae. Evol. Ecol. 16:433-454.

33. LIVELY, C.M. 1992. Parthenogenesis in a freshwater snail: reproductive assurance versus parasitic release. Evolution. 46:907-913.

34. LIVELY, C.; APANIUS, V. 1998. Genetic diversity in hostparasite interactions. En: Grenfell, B.; Dobson, A. eds. Ecology of infectious diseases in natural populations. Cambridge University Press. (Cambridge, RU). p.421-449.

35. LIVELY, C.M.; CRADOCCI, C.; VRIJENHOEK, R.C. 1990. Red Queen Hypothesis supported by parasitism in clonal and sexual fish. Nature 344:864-866.

36. LYLES, A.M.; DOBSON, A.P. 1993. Infectious disease and intensive management: population dynamics, threatened hosts, and their parasites. J. Zoo and Wildlife Med. 24(3):315-326.

37. LYTHGOE, K.A. 2000. The coevolution of parasites with host-acquired immunity and the evolution of sex. Evolution. 54(4):1142-1156.

38. MARTENS, K.; SCH?N, I. 2000. Parasites, predators and the Red Queen. Trends in Ecology & Evolution. 15: 392-393.

39. MICHAELI, D.; SENYK, G.; MAOZ, A.; FUCHS, S. 1972. Ascaris cuticle collagen and mammalian collagens: cell mediated and humoral immunity relationships. J. Immunol. 109:103-109.

40. MOCK, B.A.; GILL, D.E. 1984. The infrapopulation dynamics of trypanosomes in red- spotted newts. Parasitol. 88:267-282.

41. O'BRIEN, S.J.; EVERMANN, J.F. 1988. Interactive influence of infectious disease and genetic diversity in natural populations. Trends in Ecol. and Evol. 3(10):254-259.

42. OWENS, I. 2002. Male-only care and classical polyandry in birds: phylogeny, ecology and sex differences in remating opportunities. Phil. Trans. R. Soc. Lond. 357:283-293.

43. PALMER, A.R. 1994. Fluctuating asymmetry analyses: a primer. En: Markow, T.A. ed. Developmental instability: its origins and evolutionary implications. Kluwer Publishers. (Dutrecht, Holanda). p.335-364.

44. PITHER, J.; TAYLOR, P.D. 2000. Directional and fluctuating asymmetry in the black-wing damselfly Calopteryx maculata (Beauvois) (Odonata: Calpterygidae). Can. J. Zool. 78:1740-1748.

45. POLAK, M. 1997. Ectoparasitism in mother causes higher positional fluctuating asymmetry in their sons: implications for sexual selection. Am. Nat. 149: 955- 974.

46. PROCTOR, H.; OWENS, I. 2000. Mites and birds: diversity, parasitism and coevolutiom. Trends in Ecology and Evolution. 15(9):358-364.

47. RHODE, K. 1990. Phylogeny of platyhelminthes, with special reference to parasitic groups. Internal. J. Parasitol. 20:979-1007.

48. RICO-HERNÁNDEZ, G. 2004. Implicaciones de enfermedades infecciosas en la conservación de fauna silvestre de vida libre. Rev. U.D.C.A Act. & Div. Cient. 7(1):59-67.

49. RICO-HERNÁNDEZ, G.; JUAN-SALLÉS, C.; GARNER, M.M.; BARR, B.C. 2004. Pulmonary besnoitiasis in patagonian hare (Dolichotis patagonum) associated with interstitial pneumonia. Vet. Pathol. 41:408-411.

50. SANTOS-ANGONESI, P.; ALMEIDA-SILVA, B.; LUCENAMENDES, S.; DOS SANTOS PYRRHO, A. 2009. Endoparasitos em Muriquis-Do-Norte, Brachyteles hypoxanthus, Isolados em Pequeno Fragmento de Mata Atlantica. Neotropical Primates 16(1): 15-17.

51. SCARPASSA, V.M.; TADEI, W.P.; KERR, W. 1992. Biology of amazonian anopheline mosquitoes. XVI. Evidence of multiple insemination (Poliandry) in Anopheles nuneztovari Gabaldoni, 1940 (Diptera:Culicidae). Rev. Brasil. Genet. 15(1):51-64.

52. SCOTT, M.E. 1988. The impact of infection and disease on animal populations: Implications for conservation biology. Conservation Biology. 2:40-56.

53. SHERMAN, P.W.; SEELEY, T.D.; REEVE, H.K. 1988. Parasites, pathogens and polyandry in social Hymenoptera. American Nat. 131:602-610.

54. SHYKOFF, J.A.; BUCHELI, E.; KALTZ, O. 1996. Flower lifespan and disease risk. Nature. 379: 799.

55. STONER, K.E.; GONZÁLEZ-DI PIERRO, A.M.; MALDONADO-LÓPEZ, S. 2005. Infecciones de parásitos intestinales de primates: Implicaciones para la conservación. Universidad y Ciencia. Número Especial II: 61-72.

56. STUART, M.D.; STRIER, K.B. 1995. Primates and parasites: a case for a multidisciplinary approach. Internal J. Primatol. 16(4):577-593.

57. THOMPSON, J.N. 1987. Symbiont-induced speciation. Biol. J. Linnean Soc. 32:385-393.

58. THOMPSON, J.N. 1994. The coevolutionary process. University of Chicago Press. (Chicago, USA). 376p.

59. THORNHILL, R. 1992. Fluctuating assymmetry and the mating system of the Japanese scorpionfly. Animal Behavior. 43:867-879.

60. VALDESPINO, C.; RICO-HERNÁNDEZ, G.; MANDUJANO, S. 2010. Gastrointestinal parasites of howler monkeys (Alouatta palliata) inhabiting the fragmented landscape of the Santa Marta mountain range, Veracruz, Mexico. Am. J. Primatol. 71:1-10.

61. WEST, S.A.; LIVELY, C.M.; READ, A.F. 1999. A pluralist approach to sex and recombination. J. Evol. Biol. 12:1003-1012.

62. YAN, G.; SEVERSON, D.W.; CHRISTENSEN, B.M. 1997. Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51:441-450.

Descargas

La descarga de datos todavía no está disponible.