Modelamiento matemático de la cinética de secado de espagueti enriquecido con pulpa de zapallo deshidratada (Cucurbita moschata)
Mathematical modeling of spaghetti drying kinetics enriched with dehydrated squash pulp (Cucurbita moschata)
Contenido principal del artículo
Resumen
A pesar que diversos estudios se han llevado a cabo sobre modelamiento matemático de las cinéticas de secado de espagueti, no se han desarrollado para espaguetis con sustitución de sémola de trigo Triticum durum por pulpa de zapallo deshidratada (PZD), por lo tanto, el objetivo de esta investigación fue modelar las cinéticas de secado de espagueti sustituido parcialmente con PZD (5 y 10g/100g harina), evaluar el efecto de la sustitución y la temperatura (50 y 60°C), sobre el tiempo de secado (contenido de humedad final = 0,13g/g b.s.), la difusividad efectiva (De) y algunas características que definen la calidad del producto (contenido de humedad, calidad de cocción y contenido de carotenoides totales). Para ello, se emplearon modelos matemáticos reportados en la literatura, como también la segunda ley de Fick, para un cilindro infinito. Los resultados mostraron que los modelos Henderson & Pabis y el Logarítmico presentaron mayor ajuste (R2 ≥ 0,90) a las cinéticas de secado experimentales; por el contrario, el modelo de Lewis presentó el menor ajuste. Se obtuvieron tiempos de secado de 5,00-4,10h, para las cinéticas realizadas a 50°C y tiempos de secado de 3,40-2,80h (aproximadamente), para las cinéticas a 60°C. De varió desde 1,50 hasta 2,50 x 10-7 cm2s-1, la cual, aumentó con la temperatura. En definitiva, la calidad del espagueti se afectó negativamente con el aumento de PZD y positivamente con el aumento de la temperatura de secado.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
AMERICAN ASSOCIATION OF CEREAL CHEMISTS, AACCI. 2000. 66-50.01. 11th Ed, Pasta and Noodle Cooking Quality—Firmness. St. Paul, MN, USA
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS, AOAC. 2003. Official Methods of Analysis, Washington D.C., USA
AGRAWAL, Y.C.; SINGH, R.D. 1977. Thin layer drying studies for short grain rice. Transactions of the American society of Agricultural and Biological Engineers (USA). 77:3531
ALJAHANI, A.; CHEIKHOUSMAN, R. 2017. Nutritional and sensory evaluation of pumpkin-based (Cucurbita maxima) functional juice. Nutrition and Food Science (United Kingdom). 47(3):346-356. https://doi.org/10.1108/NFS-07-2016-0109
ASTAÍZA, M.; RUÍZ, L.; ELIZALDE, A. 2010. Elaboración de pastas alimenticias enriquecidas a partir de harina de quinua (Chenopodium quinoa wild.) y zanahoria (Daucus carota). Biotecnología en el Sector Agropecuario y Agroindustrial. (Colombia). 8(1):43-53
BERGANTIN, C.; MAIETTI, A.; TEDESCHI, P.; FONT, G.; MANYES, L.; MARCHETTI, N. 2018. HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “Delica” (Cucurbita maxima) and “Violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules. (Switzerland). 23:1-13. https://doi.org/10.3390/molecules23112791
CHHINNAN, M.S. 1984. Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Transactions Am. Soc. Agricultural and Biological Engineers. (USA). 27(2):610-615. https://doi.org/10.13031/2013.32837
CRANK, J. 1975. The Diffusion Equations. Oxford University. The mathematics of Diffusión. Great Britain, England. 2a Ed., p.5-10
DE CARVALHO, L.M.J.; GOMES, P.B.; GODOY, R.L. DE O.; PACHECO, S.; DO MONTE, P.H.F.; DE CARVALHO, J.L.V.; NUTTI, M.R.; LIMA NEVES, A.C.; RODRIGUES ALVES VIEIRA, A.C.; RAMOS, S.R.R. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. (Netherlands). 47(2):337340. https//doi.org/10.1016/j.foodres.2011.07
DE PILLI, T.; GIULIANI, R.; DEROSSI, A.; SEVERINI, C. 2009. Study of cooking quality of spaghetti dried through microwaves and comparison with hot air dried pasta. J. Food Engineering. (USA). 95(3):453-459. https//:doi.org/10.1016/j.jfoodeng.2009.06.005
DE TEMMERMAN, J.; VERBOVEN, P.; NICOLAI, B.; RAMON, H. 2007. Modelling of transient moisture concentration of semolina pasta during air drying. J. Food Engineering. 80(3):892-903. https://doi.org/10.1016/j.jfoodeng.2006.08.004
DEXTER, J.E.; MATSUO, R.R.; MORGAN, B.C. 1981. High Temperature Drying: Effect on Spaghetti Properties. J. Food Science. (USA). 46:1741-1746. https://doi.org/10.1111/j.1365-2621.1981.tb04476.x
ERTEKIN, C.; YALDIZ, O. 2004. Draying of eggplant and selection of a suitable thin layer drying model, J. Food Engineering. 63(4):349-359. https://doi.org/10.1016/j.jfoodeng.2003.08.007
ESCALADA PLA, M.F.; PONCE, N.M.; STORTZ, C.A.; GERSCHENSON, L.N.; ROJAS, A.M. 2007. Composition and functional properties of enriched fiber products obtained from pumpkin (Cucurbita moschata Duchesne ex Poiret). LWT- Food Science and Technology. (Switzerland). 40:1176-1185. https://doi.org/10.1016/j.lwt.2006.08.006
GEANKOPLIS, C.J. 1998. Procesos de transporte y operaciones unitarias. Compañía Editorial Continental, S.A. de C.V. México, 3a Ed. 1007p
GONZÁLEZ, E.; MONTENEGRO, M.A.; NAZARENO, M.A. 2001. Carotenoid composition and vitamin A value of an Argentinian squash (Cucurbita moschata). Arch. Latinoam. Nutrición (Venezuela), 51(4):395-399
HENDERSON, S.M. 1974. Progress in developing the thin-layer drying equation. Transactions Am. Soc. Agricultural and Biological Engineers. 17(6):1167-1168/1172 https://doi.org/10.13031/2013.37052
IHNS, R.; DIAMANTE, L.M.; SAVAGE, G P.; VANHANEN, L. 2011. Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Internal J. Food Science & Technology (United Kingdom). 46(2):275-283. https://doi.org/10.1111/j.1365-2621.2010.02506.x
KANDLAKUNTA, B.; RAJENDRAN, A.; THINGNGANING, L. 2008. Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chemistry. (Netherlands), 106(1):85-89 https://doi.org/10.1016/j.foodchem.2007.05.071
LARROSA, V.; LORENZO, G.; ZARITZKY, N.; CALIFANO, A. 2016. Modelado matemático del secado de pastas libres de gluten en relación a la temperatura y humedad relativa del aire. Rev. Laboratorio Tecnológico del Uruguay. 11:54-58
LU, A.; YU, M.; FANG, Z.; XIAO, B.; GUO, L.; WANG, W.; LI, J.; WANG, S.; Zhang, Y. 2019. Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. International J. Biological Macromolecules. (Netherlands). 121:261-269. https://doi.org/10.1016/j.ijbiomac.2018.09.158
MANTHEY, F.A.; SCHORNO, A. 2002. Physical and cooking quality of spaghetti made from whole-wheat durum. Cereal Chemestry. (United States). 79:504-510. https://doi.org/10.1094/CCHEM.2002.79.4.504
MERCIER, S.; MORESOLI, C.; VILLENEUVE, S.; MONDOR, M.; MARCOS, B. 2013. Sensitivity analysis of parameters affecting the drying behaviour of durum wheat pasta. J. Food Engineering. 118(1):108-116. https://doi.org/10.1016/j.jfoodeng.2013.03.024
MINAROVIČOVÁ, L.; LAUKOVÁ, M.; KOHAJDOVÁ, Z.; KAROVIČOVÁ, J.; KUCHTOVÁ, V. 2017. Effect of pumpkin powder incorporation on cooking and sensory parameters of pasta. Potravinarstvo Slovak J. Food Sciences. 11(1):373-379.https://doi.org/10.5219/743
MIRHOSSEINI, H.; ABDUL RASHID, N.F.; TABATABAEE AMID, B.; CHEONG, K.W.; KAZEMI, M.; ZULKURNAIN, M. 2015. Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. LWT - Food Science and Technology. 63(1):184-190.https://doi.org/10.1016/j.lwt.2015.03.078
NOOR, A.A.; KOMATHI, C.A. 2009. Physicochemical and Functional Properties of Peeled and Unpeeled Pumpkin Flour. J. Food Science. 74(7):328-333.https://doi.org/10.1111/j.1750-3841.2009.01298.x
ORDOÑEZ - SANTOS, L.E.; HURTADO, P.; RÍOS, O.D.; ARIAS, M.E. 2014. Concentración de carotenoides totales en residuos de frutas tropicales, Producción+Limpia (Colombia). 9 (1):91-98
ORREGO, C.E.; VALLEJO, D.; MANRIQUE, D.L.; GONZÁLEZ, J.D.; OCAMPO, J.C. 2016. Inactivación de peroxidasa en banano (Musa paradisiaca) por medio de tratamiento térmico y ultrasónico. Agronomía Colombiana. 34(1Supl.):S457-S460
OZDEMIR, M.; DEVRES, Y.O. 1999. The thin layer drying characteristics of hazelnuts during roasting. J. Food Engineering. 42(4):225-233. https://doi.org/10.1016/S0260-8774(99)00126-0
PADALINO, L.; CALIANDRO, R.; CHITA, G.; CONTE, A.; DEL NOBILE, M. A. 2016. Study of drying process on starch structural properties and their effect on semolina pasta sensory quality. Carbohydrate Polymers. (Inglaterra). 153: 229-235.https://doi.org/10.1016/j.carbpol.2016.07.102
POTOSÍ-CALVACHE, D.C.; VANEGAS-MAHECHA, P.; MARTINEZ, H.A. 2017. Convective drying of squash (Cucurbita moschata): Influence of temperature and air velocity on effective moisture diffusivity, carotenoid content and total phenols. DYNA (Colombia). 84(202):112-119.https://doi.org/10.15446/dyna.v84n202.63904
SAMRITTHISUTH, C.; RATTANASUMAWONG, S. 2013. Effect of drying temperature on rehydration properties of dried rice noodle. Conference peper, Procedings of the 51st Kasetsart University Annual Conference, Bangkok, Thailand, 5 -7 February 2013, p.175 ref 8
SHARAF-ELDEEN, O.; BLAISDELL, Y.I.; SPAGNA, G. 1980. A model for ear corn drying. Transactions Am. Soc. Agricultural and Biological Engineers. 23(5):1261-1271.https://doi.org/10.13031/2013.34757
VEGA, A.; FITO, P. 2005. Modelado de la cinética de secado del pimiento Rojo (Capsicum annuum L. cv Lamuyo). Inform. Tecnológica (Chile). 16(6):3-11. https://doi.org/10.4067/S0718-07642005000600002
WAANANEN, K.M. 1996. Effect of porosity on moisture diffusion during drying of pasta. J. Food Engineering. 28(2):121-137. https://doi.org/10.1016/0260-8774(94)00082-4
WESTERMAN, P.W.; WHITE, G.M.; ROSS, I.J. 1973. Relative humidity effect on the high temperature drying of shelled corn. Transactions Am. Soc. Agricultural and Biological Engineers. 16:1136-1139.https://doi.org/10.13031/2013.37715
YAGCIOGLU, A.; DEGIRMENCIOGLU, A.; CAGATAY, F. 1999. Drying characteristics of laurel leaves under different drying conditions. In Proceedings of the 7th international congress on agricultural mechanization and energy, Adana, Turkey