Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión
Key factors in bioremediation processes for the wastewater treatment. A review
Contenido principal del artículo
Resumen
La biorremediación ha demostrado ser una alternativa para establecer nuevos sistemas de depuración de aguas residuales y optimizar los sistemas convencionales existentes. El objetivo de este artículo de revisión es identificar y analizar los factores clave en procesos de biorremediación para la depuración de aguas residuales, a nivel mundial. Se utilizó un método de revisión sistemática de literatura, que incluyó un índice de frecuencia de citación mediante cuartiles (Q). Los resultados mostraron la existencia de seis factores clave en procesos de biorremediación para la depuración de aguas residuales: pH (Q3) > temperatura (Q2) > oxígeno (Q2) > nitrógeno (Q2) > fósforo (Q1) > DBO5 (Q1). No existieron diferencias significativas entre las tecnologías de bioaumentación y bioestimulación en relación a los seis factores clave identificados. No se evidenció, en el ámbito mundial, una tendencia en el uso de alguna de estas dos tecnologías; sin embargo, en Asía, Europa y Norte América, se detectó un mayor número de reportes en el uso de la tecnología de bioaumentación y, en Sur América y África, existió mayor empleo de la tecnología de bioestimulación. Las tecnologías de biorremediación (Q1), probablemente, se encontraron en una fase inicial de desarrollo y aplicación en sistemas de depuración para aguas residuales, debido a que las tecnologías químicas (Q2) y físicas (Q2) presentaron un mayor reporte, a nivel mundial. Finalmente, los resultados de esta revisión son un punto de referencia para las instituciones ambientales, encargadas del control de la calidad del agua y diseñadores y operadores en sistemas de depuración.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
2. ABOU-ELELA, S.I.; FAWZY, M.E.; EL-GENDY, A.S. 2015. Potential of using biological aerated filter as a post treatment for municipal wastewater. Ecol. Eng. 84:53-57. https://doi.org/10.1016/j.ecoleng.2015.07.022
3. BEHNOOD, M.; NASERNEJAD, B.; NIKAZAR, M. 2014. Biodegradation of crude oil from saline waste water using white rot fungus Phanerochaete chrysosporium. J. Ind. Eng. Chem. 20(4):1879-1885. https://doi.org/10.1016/j.jiec.2013.09.007
4. CASTILLO, E.; LIZAMA, C.; MÉNDEZ, R.; GARCÍA, J.; ESPADAS, A.; PAT, R. 2011. Tratamiento de efluentes de fosas sépticas por el proceso de lodos activados. Ingeniería. 15(3):529-565.
5. CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour. Technol. 183:25-32. https://doi.org/10.1016/j.biortech.2015.02.022
6. DANALEWICH, J.R.; PAPAGIANNIS, T.G.; BELYEA, R.L.; TUMBLESON, M.E.; RASKIN, L. 1998. Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res. 32(12):3555-3568. https://doi.org/10.1016/S0043-1354(98)00160-2
7. DAS GUPTA, A.; SARKAR, S.; GHOSH, P.; SAHA, T.; SIL, A.K. 2016. Phosphorous dynamics of the aquatic system constitutes an important axis for waste water purification in natural treatment pond(s) in East Kolkata Wetlands. Ecol. Eng. 90:63-67. https://doi.org/10.1016/j.ecoleng.2016.01.056
8. DIBBLE, J.T.; BARTHA, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37(4):729-739.
9. DUKE, N.C.; BURNS, K.A.; SWANNELL, R.P.J.; DALHAUS, O.; RUPP, R.J. 2000. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves:the Gladstone field trials. Mar. Pollut. Bull. 41(7-12):403-412. https://doi.org/10.1016/S0025-326X(00)00133-8
10. ERMAWATI, R.; MORIMURA, S.; TANG, Y.; LIU, K.; KIDA, K. 2007. Degradation and behavior of natural steroid hormones in cow manure waste during biological treatments and ozone oxidation. J. Biosci. Bioeng. 103(1):27-31. https://doi.org/10.1263/jbb.103.27
11. FANG, F.; QIAO, L.; CAO, J.; LI, Y.; XIE, W.; SHENG, G.; YU, H. 2016. Quantitative evaluation of A2O and reversed A2O processes for biological municipal wastewater treatment using a projection pursuit method. Sep. Purif. Technol. 166:164-170. https://doi.org/10.1016/j.seppur.2016.04.036
12. GAO, P.; LI, G.; DAI, X.; DAI, L.; WANG, H.; ZHAO, L.; CHEN, Y.; MA, T. 2013. Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World J. Microbiol. Biotechnol. 29(11):2045-2054. https://doi.org/10.1007/s11274-013-1367-4
13. GARCÍA, S.; VENOSA, A.D.; SUIDAN, M.T.; LEE, K.; COBANLI, S.; HAINES, J.R. 2007. Biostimulation for the treatment of an oil contaminated coastal salt march. Biodegradation. 18(1):1-15. https://doi.org/10.1007/s10532-005-9029-3
14. GONG, X. 2012. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified fenton oxidation. Int. Biodeterior. Biodegrad. 70:89-95. https://doi.org/10.1016/j.ibiod.2012.02.004
15. GUO, J.; WANG, J.; CUI, D.; WANG, L.; MA, F.; CHANG, C.; YANG, J. 2010. Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures. Bioresour. Technol. 101(17):6622-6629. https://doi.org/10.1016/j.biortech.2010.03.093
16. HASSANSHAHIAN, M.; AHMADINEJAD, M.; TEBYANIAN, H.; KARIMINIK, A. 2013. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar. Pollut. Bull. 73(1):300-305. https://doi.org/10.1016/j.marpolbul.2013.05.002
17. HONG, S.U.; OUYANG, L.; BRUENING, M.L. 2009. Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. J. Membrane Sci. 327(1-2):2-5. https://doi.org/10.1016/j.memsci.2008.11.035
18. JI, G.; TONG, J.; TAN, Y. 2011. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresour. Technol. 102(2):550-557. https://doi.org/10.1016/j.biortech.2010.07.075
19. KAHMARK, K.A.; UNWIN, J.P. 1998. Pulp and paper effluent management. Water Environ. Res. 70(4):667-690. https://doi.org/10.2175/106143098X134406
20. KUMAR, A.; DHALL, P.; KUMAR, R. 2010. Redefining BOD: COD ratio of pulp mill industrial wastewaters in BOD analysis by formulating a specific microbial seed. Int. Biodeterior. Biodegrad. 64(3):197-202. https://doi.org/10.1016/j.ibiod.2010.01.005
21. KYRIACOU, A.; LASARIDI, K.E.; KOTSOU, M.; BALIS, C.; PILIDIS, G. 2005. Combined bioremediation and advanced oxidation of green table olive processing wastewater. Process Biochem. 40(3-4):1401-1408. https://doi.org/10.1016/j.procbio.2004.06.001
22. LIM, S.; CHU, W.; PHANG, S. 2010. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 101(19):7314-7322. https://doi.org/10.1016/j.biortech.2010.04.092
23. LIU, H.W.; LO, S.N.; LAVALLEE, H.C. 1996. Theoretical study on two-stage anaerobic biological treatment of a CTMP effluent. Part I: effects of operating conditions on system behaviour. Water Qual. Res. J. Can. 31(1):1-19.
24. LU, H.; YUAN, Y.; CAMPBELL, D.E.; QIN, P.; CUI, L. 2014. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecol. Eng. 69:244-254. https://doi.org/10.1016/j.ecoleng.2014.04.024
25. MARCELINO, R.B.P.; LEÃO, M.M.D.; LAGO, R.M.; AMORIM, C.C. 2017. Multistage ozone and biological treatment system for real wastewater containing antibiotics. J. Environ. Manage. 195(2):110-116. https://doi.org/10.1016/j.jenvman.2016.04.041
26. MARGESIN, R.; SCHINNER, F. 1998. Low-temperature bioremediation of a waste water contaminated with anionic surfactants and fuel oil. Appl. Microbiol. Biotechnol. 49(4):482-486. https://doi.org/10.1007/s002530051202
27. MARINHO-SORIANO, E.; AZEVEDO, C.A.A.; TRIGUEIRO, T.G.; PEREIRA, D.C.; CARNEIRO, M.A.A.; CAMARA, M.R. 2011. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 65(1):253-257. https://doi.org/10.1016/j.ibiod.2010.10.001
28. NANNIPIERI, P.; ASCHER, J.; CECCHERINI, M.T.; LANDI, L.; PIETRAMELLARA, G.; RENELLA, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54(4):655-670. https://doi.org/10.1111/ejss.4_12398
29. NI, S.Q.; WANG, Z.; LV, L.; LIANG, X.; REN, L.; ZHOU, Q. 2015. Bioremediation of wastewaters with decabromodiphenyl ether by anaerobic granular sludge. Colloids Surf. B Biointerfaces. 128:522-527. https://doi.org/10.1016/j.colsurfb.2015.03.003
30. NIEVAS, M.L.; COMMENDATORE, M.G.; ESTEVES, J.L.; BUCALÁ, V. 2005. Effect of pH modification on bilge waste biodegradation by a native microbial community. Inter. Biodeterior. Biodegrad. 56(3):151-157. https://doi.org/10.1016/j.ibiod.2005.06.006
31. NIKOLOPOULOU, M.; KALOGERAKIS, N. 2009. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J. Chem. Tec. & Biotechn. 84(6):802-807. https://doi.org/10.1002/jctb.2182
32. NTENGWE, F.W. 2005. The cost benefit and efficiency of waste water treatment using domestic ponds - The ultimate solution in Southern Africa. Phys. Chem. Earth. 30(11.16):735-743. https://doi.org/10.1016/j.pce.2005.08.015
33. OSUOLALE, O.; OKOH, A. 2015. Assessment of the physicochemical qualities and prevalence of Escherichia coli and Vibrios in the final effluents of two wastewater treatment plants in South Africa: Ecological and public health implications. Int. J. Environ. Res. Public Health. 12(10):13399-13412. https://doi.org/10.3390/ijerph121013399
34. PREVOST, B.; LUCAS, F.S.; GONCALVES, A.; RICHARD, F.; MOULIN, L.; WURTZER, S. 2015. Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environ. Int. 79:383-396. https://doi.org/10.1016/j.envint.2015.03.004
35. QUAN, Y.; HAN, H.; ZHENG, S. 2012. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater. Bioresour. Technol.120:1-5. https://doi.org/10.1016/j.biortech.2012.06.019
36. RAJENDRAN, R.; SOORA, M.; DANANJEYAN, B.; RATERING, S.; KRISHNAMURTHY, K.; BENCKISER, G. 2012. Microbial community diversity of organically rich cassava sago factory waste waters and their ability to use nitrate and N2O added as external N-sources for enhancing biomethanation and the purification efficiency. J. Biotechnol. 164(2):266-275. https://doi.org/10.1016/j.jbiotec.2012.11.013
37. RANA, R.; SINGH, P.; KANDARI, V.; SINGH, R.; DOBHAL, R.; GUPTA, S. 2017. A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Appl. Water Sci. 7(1):1-12. https://doi.org/10.1007/s13201-014-0225-3
38. SALINAS, A.; SANTOS, M.; SOTO, O.; DELGADO, E.; PÉREZ, H.; HÁUAD, L.A.; MEDRANO, H. 2008. Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J. Environ. Manage. 88(1):115-119. https://doi.org/10.1016/j.jenvman.2007.01.038
39. SANSCARTIER, D.; LAING, T.; REIMER, K.; ZEEB, B. 2009. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere. 77(8):1121-1126. https://doi.org/10.1016/j.chemosphere.2009.09.006
40. SARATALE, R.G.; SARATALE, G.D.; CHANG, J.S.; GOVINDWAR, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42(1):138-157. https://doi.org/10.1016/j.jtice.2010.06.006
41. SARKAR, D.; FERGUSON, M.; DATTA, R.; BIRNBAUM, S. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136(1):187-195. https://doi.org/10.1016/j.envpol.2004.09.025
42. SODE, S.; BRUHN, A.; BALSBY, T.J.S.; LARSEN, M.M.; GOTFREDSEN, A.; RASMUSSEN, M.B. 2013. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresour. Technol. 146:426-435. https://doi.org/10.1016/j.biortech.2013.06.062
43. STOLL, A.; DUNCAN, J.R. 1997. Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial wastewater. Environ. Pollut. 97(3):247-251. https://doi.org/10.1016/S0269-7491(97)00094-8
44. TANG, H.L.; CHEN, H. 2015. Nitrification at full-scale municipal wastewater treatment plants: Evaluation of inhibition and bioaugmentation of nitrifiers. Bioresour. Technol. 190:76-81. https://doi.org/10.1016/j.biortech.2015.04.063
45. TYAGI, M.; FONSECA, M.M.R.; CARVALHO, C.C.C.R. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 22(2):231-241. https://doi.org/10.1007/s10532-010-9394-4
46. VERMA, R.; SUTHAR, S. 2014. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 64:337-343. https://doi.org/10.1016/j.ecoleng.2013.12.055
47. WANG, C.; ZHENG, S.; WANG, P.; QIAN, J. 2014. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. 26(4):497-511. https://doi.org/10.1016/S1001-6058(14)60057-3
48. WANI, D.; PANDIT A.K.; KAMILI, A.N. 2013. Microbial assessment and effect of seasonal change on the removal efficiency of FAB based sewage treatment plant. J. Environ. Eng. Ecol. Sci. 2:1-4. https://doi.org/10.7243/2050-1323-2-1
49. WEN, D.; ZHANG, J.; XIONG, R.; LIU, R.; CHEN, L. 2013. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J. Environ. Sci. 25(11):2265-2271. https://doi.org/10.1016/S1001-0742(12)60278-2
50. ZAFRA, C.; TEMPRANO, J.; TEJERO, I.; 2017. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water J. 14(6):639-649. https://doi.org/10.1080/1573062X.2016.1223320
51. ZHOU, D.; LI, Y.; ZHANG, Y.; ZHANG, C.; LI, X.; CHEN, Z; HUANG, J.; LI, X.; FLORES, G.; KAMON, M. 2014. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J. Contam. Hydrol. 168:1-16. https://doi.org/10.1016/j.jconhyd.2014.09.003