Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión

Key factors in bioremediation processes for the wastewater treatment. A review

Contenido principal del artículo

Óscar Ome Barrera
Carlos Zafra Mejía

Resumen

La biorremediación ha demostrado ser una alternativa para establecer nuevos sistemas de depuración de aguas residuales y optimizar los sistemas convencionales existentes. El objetivo de este artículo de revisión es identificar y analizar los factores clave en procesos de biorremediación para la depuración de aguas residuales, a nivel mundial. Se utilizó un método de revisión sistemática de literatura, que incluyó un índice de frecuencia de citación mediante cuartiles (Q). Los resultados mostraron la existencia de seis factores clave en procesos de biorremediación para la depuración de aguas residuales: pH (Q3) > temperatura (Q2) > oxígeno (Q2) > nitrógeno (Q2) > fósforo (Q1) > DBO5 (Q1). No existieron diferencias significativas entre las tecnologías de bioaumentación y bioestimulación en relación a los seis factores clave identificados. No se evidenció, en el ámbito mundial, una tendencia en el uso de alguna de estas dos tecnologías; sin embargo, en Asía, Europa y Norte América, se detectó un mayor número de reportes en el uso de la tecnología de bioaumentación y, en Sur América y África, existió mayor empleo de la tecnología de bioestimulación. Las tecnologías de biorremediación (Q1), probablemente, se encontraron en una fase inicial de desarrollo y aplicación en sistemas de depuración para aguas residuales, debido a que las tecnologías químicas (Q2) y físicas (Q2) presentaron un mayor reporte, a nivel mundial. Finalmente, los resultados de esta revisión son un punto de referencia para las instituciones ambientales, encargadas del control de la calidad del agua y diseñadores y operadores en sistemas de depuración.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

1. ABDEL-KADER, A.M. 2013. Studying the efficiency of grey water treatment by using rotating biological contactors system. J. King. Saud. Univ. Eng. Sci. 25(2):89-95. https://doi.org/10.1016/j.jksues.2012.05.003

2. ABOU-ELELA, S.I.; FAWZY, M.E.; EL-GENDY, A.S. 2015. Potential of using biological aerated filter as a post treatment for municipal wastewater. Ecol. Eng. 84:53-57. https://doi.org/10.1016/j.ecoleng.2015.07.022

3. BEHNOOD, M.; NASERNEJAD, B.; NIKAZAR, M. 2014. Biodegradation of crude oil from saline waste water using white rot fungus Phanerochaete chrysosporium. J. Ind. Eng. Chem. 20(4):1879-1885. https://doi.org/10.1016/j.jiec.2013.09.007

4. CASTILLO, E.; LIZAMA, C.; MÉNDEZ, R.; GARCÍA, J.; ESPADAS, A.; PAT, R. 2011. Tratamiento de efluentes de fosas sépticas por el proceso de lodos activados. Ingeniería. 15(3):529-565.

5. CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour. Technol. 183:25-32. https://doi.org/10.1016/j.biortech.2015.02.022

6. DANALEWICH, J.R.; PAPAGIANNIS, T.G.; BELYEA, R.L.; TUMBLESON, M.E.; RASKIN, L. 1998. Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res. 32(12):3555-3568. https://doi.org/10.1016/S0043-1354(98)00160-2

7. DAS GUPTA, A.; SARKAR, S.; GHOSH, P.; SAHA, T.; SIL, A.K. 2016. Phosphorous dynamics of the aquatic system constitutes an important axis for waste water purification in natural treatment pond(s) in East Kolkata Wetlands. Ecol. Eng. 90:63-67. https://doi.org/10.1016/j.ecoleng.2016.01.056

8. DIBBLE, J.T.; BARTHA, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37(4):729-739.

9. DUKE, N.C.; BURNS, K.A.; SWANNELL, R.P.J.; DALHAUS, O.; RUPP, R.J. 2000. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves:the Gladstone field trials. Mar. Pollut. Bull. 41(7-12):403-412. https://doi.org/10.1016/S0025-326X(00)00133-8

10. ERMAWATI, R.; MORIMURA, S.; TANG, Y.; LIU, K.; KIDA, K. 2007. Degradation and behavior of natural steroid hormones in cow manure waste during biological treatments and ozone oxidation. J. Biosci. Bioeng. 103(1):27-31. https://doi.org/10.1263/jbb.103.27

11. FANG, F.; QIAO, L.; CAO, J.; LI, Y.; XIE, W.; SHENG, G.; YU, H. 2016. Quantitative evaluation of A2O and reversed A2O processes for biological municipal wastewater treatment using a projection pursuit method. Sep. Purif. Technol. 166:164-170. https://doi.org/10.1016/j.seppur.2016.04.036

12. GAO, P.; LI, G.; DAI, X.; DAI, L.; WANG, H.; ZHAO, L.; CHEN, Y.; MA, T. 2013. Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World J. Microbiol. Biotechnol. 29(11):2045-2054. https://doi.org/10.1007/s11274-013-1367-4

13. GARCÍA, S.; VENOSA, A.D.; SUIDAN, M.T.; LEE, K.; COBANLI, S.; HAINES, J.R. 2007. Biostimulation for the treatment of an oil contaminated coastal salt march. Biodegradation. 18(1):1-15. https://doi.org/10.1007/s10532-005-9029-3

14. GONG, X. 2012. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified fenton oxidation. Int. Biodeterior. Biodegrad. 70:89-95. https://doi.org/10.1016/j.ibiod.2012.02.004

15. GUO, J.; WANG, J.; CUI, D.; WANG, L.; MA, F.; CHANG, C.; YANG, J. 2010. Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures. Bioresour. Technol. 101(17):6622-6629. https://doi.org/10.1016/j.biortech.2010.03.093

16. HASSANSHAHIAN, M.; AHMADINEJAD, M.; TEBYANIAN, H.; KARIMINIK, A. 2013. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar. Pollut. Bull. 73(1):300-305. https://doi.org/10.1016/j.marpolbul.2013.05.002

17. HONG, S.U.; OUYANG, L.; BRUENING, M.L. 2009. Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. J. Membrane Sci. 327(1-2):2-5. https://doi.org/10.1016/j.memsci.2008.11.035

18. JI, G.; TONG, J.; TAN, Y. 2011. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresour. Technol. 102(2):550-557. https://doi.org/10.1016/j.biortech.2010.07.075

19. KAHMARK, K.A.; UNWIN, J.P. 1998. Pulp and paper effluent management. Water Environ. Res. 70(4):667-690. https://doi.org/10.2175/106143098X134406

20. KUMAR, A.; DHALL, P.; KUMAR, R. 2010. Redefining BOD: COD ratio of pulp mill industrial wastewaters in BOD analysis by formulating a specific microbial seed. Int. Biodeterior. Biodegrad. 64(3):197-202. https://doi.org/10.1016/j.ibiod.2010.01.005

21. KYRIACOU, A.; LASARIDI, K.E.; KOTSOU, M.; BALIS, C.; PILIDIS, G. 2005. Combined bioremediation and advanced oxidation of green table olive processing wastewater. Process Biochem. 40(3-4):1401-1408. https://doi.org/10.1016/j.procbio.2004.06.001

22. LIM, S.; CHU, W.; PHANG, S. 2010. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 101(19):7314-7322. https://doi.org/10.1016/j.biortech.2010.04.092

23. LIU, H.W.; LO, S.N.; LAVALLEE, H.C. 1996. Theoretical study on two-stage anaerobic biological treatment of a CTMP effluent. Part I: effects of operating conditions on system behaviour. Water Qual. Res. J. Can. 31(1):1-19.

24. LU, H.; YUAN, Y.; CAMPBELL, D.E.; QIN, P.; CUI, L. 2014. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecol. Eng. 69:244-254. https://doi.org/10.1016/j.ecoleng.2014.04.024

25. MARCELINO, R.B.P.; LEÃO, M.M.D.; LAGO, R.M.; AMORIM, C.C. 2017. Multistage ozone and biological treatment system for real wastewater containing antibiotics. J. Environ. Manage. 195(2):110-116. https://doi.org/10.1016/j.jenvman.2016.04.041

26. MARGESIN, R.; SCHINNER, F. 1998. Low-temperature bioremediation of a waste water contaminated with anionic surfactants and fuel oil. Appl. Microbiol. Biotechnol. 49(4):482-486. https://doi.org/10.1007/s002530051202

27. MARINHO-SORIANO, E.; AZEVEDO, C.A.A.; TRIGUEIRO, T.G.; PEREIRA, D.C.; CARNEIRO, M.A.A.; CAMARA, M.R. 2011. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 65(1):253-257. https://doi.org/10.1016/j.ibiod.2010.10.001

28. NANNIPIERI, P.; ASCHER, J.; CECCHERINI, M.T.; LANDI, L.; PIETRAMELLARA, G.; RENELLA, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54(4):655-670. https://doi.org/10.1111/ejss.4_12398

29. NI, S.Q.; WANG, Z.; LV, L.; LIANG, X.; REN, L.; ZHOU, Q. 2015. Bioremediation of wastewaters with decabromodiphenyl ether by anaerobic granular sludge. Colloids Surf. B Biointerfaces. 128:522-527. https://doi.org/10.1016/j.colsurfb.2015.03.003

30. NIEVAS, M.L.; COMMENDATORE, M.G.; ESTEVES, J.L.; BUCALÁ, V. 2005. Effect of pH modification on bilge waste biodegradation by a native microbial community. Inter. Biodeterior. Biodegrad. 56(3):151-157. https://doi.org/10.1016/j.ibiod.2005.06.006

31. NIKOLOPOULOU, M.; KALOGERAKIS, N. 2009. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J. Chem. Tec. & Biotechn. 84(6):802-807. https://doi.org/10.1002/jctb.2182

32. NTENGWE, F.W. 2005. The cost benefit and efficiency of waste water treatment using domestic ponds - The ultimate solution in Southern Africa. Phys. Chem. Earth. 30(11.16):735-743. https://doi.org/10.1016/j.pce.2005.08.015

33. OSUOLALE, O.; OKOH, A. 2015. Assessment of the physicochemical qualities and prevalence of Escherichia coli and Vibrios in the final effluents of two wastewater treatment plants in South Africa: Ecological and public health implications. Int. J. Environ. Res. Public Health. 12(10):13399-13412. https://doi.org/10.3390/ijerph121013399

34. PREVOST, B.; LUCAS, F.S.; GONCALVES, A.; RICHARD, F.; MOULIN, L.; WURTZER, S. 2015. Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environ. Int. 79:383-396. https://doi.org/10.1016/j.envint.2015.03.004

35. QUAN, Y.; HAN, H.; ZHENG, S. 2012. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater. Bioresour. Technol.120:1-5. https://doi.org/10.1016/j.biortech.2012.06.019

36. RAJENDRAN, R.; SOORA, M.; DANANJEYAN, B.; RATERING, S.; KRISHNAMURTHY, K.; BENCKISER, G. 2012. Microbial community diversity of organically rich cassava sago factory waste waters and their ability to use nitrate and N2O added as external N-sources for enhancing biomethanation and the purification efficiency. J. Biotechnol. 164(2):266-275. https://doi.org/10.1016/j.jbiotec.2012.11.013

37. RANA, R.; SINGH, P.; KANDARI, V.; SINGH, R.; DOBHAL, R.; GUPTA, S. 2017. A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Appl. Water Sci. 7(1):1-12. https://doi.org/10.1007/s13201-014-0225-3

38. SALINAS, A.; SANTOS, M.; SOTO, O.; DELGADO, E.; PÉREZ, H.; HÁUAD, L.A.; MEDRANO, H. 2008. Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J. Environ. Manage. 88(1):115-119. https://doi.org/10.1016/j.jenvman.2007.01.038

39. SANSCARTIER, D.; LAING, T.; REIMER, K.; ZEEB, B. 2009. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere. 77(8):1121-1126. https://doi.org/10.1016/j.chemosphere.2009.09.006

40. SARATALE, R.G.; SARATALE, G.D.; CHANG, J.S.; GOVINDWAR, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42(1):138-157. https://doi.org/10.1016/j.jtice.2010.06.006

41. SARKAR, D.; FERGUSON, M.; DATTA, R.; BIRNBAUM, S. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136(1):187-195. https://doi.org/10.1016/j.envpol.2004.09.025

42. SODE, S.; BRUHN, A.; BALSBY, T.J.S.; LARSEN, M.M.; GOTFREDSEN, A.; RASMUSSEN, M.B. 2013. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresour. Technol. 146:426-435. https://doi.org/10.1016/j.biortech.2013.06.062

43. STOLL, A.; DUNCAN, J.R. 1997. Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial wastewater. Environ. Pollut. 97(3):247-251. https://doi.org/10.1016/S0269-7491(97)00094-8

44. TANG, H.L.; CHEN, H. 2015. Nitrification at full-scale municipal wastewater treatment plants: Evaluation of inhibition and bioaugmentation of nitrifiers. Bioresour. Technol. 190:76-81. https://doi.org/10.1016/j.biortech.2015.04.063

45. TYAGI, M.; FONSECA, M.M.R.; CARVALHO, C.C.C.R. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 22(2):231-241. https://doi.org/10.1007/s10532-010-9394-4

46. VERMA, R.; SUTHAR, S. 2014. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 64:337-343. https://doi.org/10.1016/j.ecoleng.2013.12.055

47. WANG, C.; ZHENG, S.; WANG, P.; QIAN, J. 2014. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. 26(4):497-511. https://doi.org/10.1016/S1001-6058(14)60057-3

48. WANI, D.; PANDIT A.K.; KAMILI, A.N. 2013. Microbial assessment and effect of seasonal change on the removal efficiency of FAB based sewage treatment plant. J. Environ. Eng. Ecol. Sci. 2:1-4. https://doi.org/10.7243/2050-1323-2-1

49. WEN, D.; ZHANG, J.; XIONG, R.; LIU, R.; CHEN, L. 2013. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J. Environ. Sci. 25(11):2265-2271. https://doi.org/10.1016/S1001-0742(12)60278-2

50. ZAFRA, C.; TEMPRANO, J.; TEJERO, I.; 2017. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water J. 14(6):639-649. https://doi.org/10.1080/1573062X.2016.1223320

51. ZHOU, D.; LI, Y.; ZHANG, Y.; ZHANG, C.; LI, X.; CHEN, Z; HUANG, J.; LI, X.; FLORES, G.; KAMON, M. 2014. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J. Contam. Hydrol. 168:1-16. https://doi.org/10.1016/j.jconhyd.2014.09.003

Citado por

Artículos similares

<< < 6 7 8 9 10 11 12 > >> 

También puede {advancedSearchLink} para este artículo.

Datos de la Publicación

Métrica
Éste artículo
Otros artículos
Pares Evaluadores 
0
2.4

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Éste artículo
Otros artículos
Datos de Investigación 
No
16%
Financiación externa 
No
32%
Conflicto de Intereses 
N/D
11%
Métrica
Para esta revista
Otras Revistas
Tasa de aceptación 
16%
33%
Tiempo publicación (días) 
45
145
Editor y consejo editorial:
Perfiles
Institución responsable 
Universidad de Ciencias Aplicadas UDCA
Editora: 
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A