Caracterización y diferenciación de cafés, a partir de espectroscopía infrarroja

Characterization and differentiation of coffee from infrared spectroscopy

Contenido principal del artículo

Resumen

El café es la segunda bebida más consumida en el mundo después del agua, en el que Colombia contribuye con el 9% de la producción, destacándose la calidad del café del departamento del Huila (cafés de altura); sin embargo, no hay suficiente evidencia sobre la incidencia de la altura en la calidad sensorial y composición química. En ese sentido, se buscó caracterizar y diferenciar cafés, mediante el análisis del espectro infrarrojo (FTIR) y evaluación sensorial. 62 muestras de cafés especiales fueron caracterizados, cosechados en diferentes altitudes, obtenidas en dos periodos de cosecha. Los espectros obtenidos permitieron encontrar diferenciación en los picos asociados a ácidos clorogénicos (1600-1650cm-1), entre grano verde y tostado, aunque no se observaron diferencias en los picos, según el periodo de cosecha, por sí solos. La evaluación sensorial, según la metodología SCA, 2015, no generaron diferencias estadísticamente significativas entre periodos de cosecha y variedades evaluadas. Al considerar conjuntamente el análisis sensorial y el análisis del espectro infrarrojo, se presentaron diferencias estadísticamente significativas entre periodos de cosecha, atribuibles al contenido de cafeína y al puntaje total en taza. Los resultados encontrados muestran que no existe correlación entre la altura del cultivo de café y la calidad final de la bebida.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ALVES, R.C.; CASAL, S.; OLIVEIRA, M. 2010. Tocopherols in coffee brews: Influence of coffee species, roast degree and brewing procedure. J. Food Compos. Anal (United States). (23):802-808. https://doi.org/10.1016/j.jfca.2010.02.009

CEBI, N.; TAHSIN, Y.M.; SAGDIC, O. 2017. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses. Food Chem (England). 229(15):517-526. https://doi.org/10.1016/j.foodchem.2017.02.072

CHEONG, M.W.; TONG, K.H.; MING O., J.J.; LIU S., Q.; CURRAN, P.; YU, B. 2013. Volatile composition and antioxidant capacity of Arabica coffee, Food Res. Int. (Canada) 51(1):388-396. http://dx.doi.org/10.1016/j.foodres.2012.12.058

CHENG, B.; FURTADO, A.; SMYTH, H.E.; HENRY, R.J. 2016. Influence of genotype and environment on coffee quality, Trends Food Sci Technol (England). 57:20-30. http://dx.doi.org/10.1016/j.tifs.2016.09.003

CRAIG, A.P.; FRANCA, A.S.; OLIVEIRA, L.S. 2012. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chem. 132(3):1368-1374. http://dx.doi.org/10.1016/j.foodchem.2011.11.121

DÁVILA, L. 2018. Así fue la cosecha cafetera del Huila en 2017. Disponible en internet en: http://www.lanacion.com.co/2018/01/05/asi-fue-la-cosecha-cafetera-del-huila-2017/ [con acceso el 27/07/2018]

DEBELA, B.A.; VOS, J. 2017. Tree management and envionmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS-WAGEN J LIFE SC. (Netherlands) 83:39-46. https://doi.org/10.1016/j.njas.2017.09.002

DI BELLA, G.; POTORTÌ, A.G.; LO TURCO, V.; SAITTA, M.; DUGO, G. 2014. Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots, Food Control (England) 41:185-192

DE LIMA, A.E.; GUIMARAES, M.A.N.; RODRIGUES, C.G.; BOTELHO, C.E.; DE MELO, C.E.; CARDOSO, D. 2015. Desempenho agronômico de populações de cafeeiros do grupo ‘Bourbon’. Coffee Science. (Brazil) 11: 22-32. http://dx.doi.org/10.25186/cs.v11i1.957

FARAH, A.; PAULIS, T.; TRUGO, C.L.; MARTIN, P.R. 2005. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. (United States). 53(5):1505–1513. https://doi.org/10.1021/jf048701t

FARAH, A. 2012. Coffee Constituents, in Coffee: Emerging Health Effects and Disease Prevention (ed Y.-F. Chu), Wiley-Blackwell, Oxford, UK. https://doi.org/10.1002/9781119949893.ch2

FERNANDES, B. D.; MADUREIRA, F. A. L.; SUN, D. W.; NIXDORF, S. L.; YOKO H. 2014. Application of ingrared spectral techniques on quality and compositional attributes of coffee: an overview. Food Res Int. (United States). 61:23-32. https://doi.org/10.1016/j.foodres.2014.01.005

GOTTELAND, M.; DE PABLO, V.S. 2007. Algunas verdades sobre el café. Rev. chilena de nutrición. 34(2):105-115. http://dx.doi.org/10.4067/S0717-75182007000200002

HENAO, J.D.; GUTIÉRREZ, G.N.; MEDINA R., D.R. 2017. Buenas prácticas y procedimientos para el acopio de cafés especiales. Editorial Universidad Surcolombiana. 80p

MELO, W.L.B.A. 2004. Importância da informação sobre do grau de torra do café e sua influência nas características organolépticas da bebida. São Carlos: Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Comunicado Técnico 58. 4p

ORGANIZACIÓN INTERNACIONAL DE CAFÉ, OIC. 2016. Informe del mercado del café junio 2016. El consumo de café aumenta y los precios en el mercado son los más altos en 14 meses. Disponible desde internet en: http://www.ico.org/documents/cy2015-16/cmr-0616-c.pdf [Con acceso el 9/04/2018]

OESTREICH-JANZEN, S. 2013. Chemistry of Coffee. In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Waltham, MA: Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.02786-4

OROZCO, C.N.; GUACAS, S.A.; BACCA, T. 2011. Caracterización de fincas cafeteras por calidad de la bebida y algunas condiciones ambientales y agronómicas. Rev. Ciencias Agrícolas. 28(2):9-17.

REIS, N.; FRANCA, A.S.; OLIVEIRA, L.S. 2013. Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Food Sci. Technol. (Brasil). 50(2):715-722. https://doi.org/10.1016/j.lwt.2012.07.016

RIBEIRO JULIANO, S.; SALVA TEREZINHA, J.; FERREIRA MÁRCIA, M.C. 2010. Chemometric studies for quality control of processed brazilian coffees using drifts. J. Food Quality. 33:212-227. https://doi.org/10.1111/j.1745-4557.2010.00309.x

RODRIGUEZ-SAONA, L.; ALLENDORF, M.E. 2011. Use of FTIR for rapid authentication and detection of adulteration of food. Annu. Rev Food Sci Technol (United States). 2:467-483. https://doi.org/10.1146/annurev-food-022510-133750

SANTOS, J.R.; VIEGAS, O.; PÁSCOA R., N.M.J.; FERREIRA I., M.P.L.V.O.; RANGEL A., O.S.S.; LOPES, J.A. 2016. In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chem. 208:103-110. https://doi.org/10.1016/j.foodchem.2016.03.114

SPECIALTY COFFEE ASSOCIATION OF AMERICA, SCAA. 2015. SCAA Protocols: cupping specialty coffee. Disponible en internet en: http://scaa.org/?page=resources&d=cupping-protocols [con acceso el 13/06/2016]

SCHENKER, S.; ROTHGEB, T. 2017. The roast creating the beans' signature. In the craft and science of coffee. Ed. Britta Folmer (London): p.245-271. https://doi.org/10.1016/B978-0-12-803520-7.00011-6

SUÁREZ, S.J.; RODRÍGUEZ, B.E.; DURAN, B.E. 2015. Efecto de las condiciones de cultivo, las características químicas del suelo y el manejo de grano en los atributos sensoriales de café (Coffea arabica L.) en taza. Acta Agronómica. 64(4):342-348. http://dx.doi.org/10.15446/acag.v64n4.44641

WANG, N.; LIM, L.T. 2012. Fourier transform infrared and physicochemical analyses of roasted coffee. J. Agric. Food Chem. 60(21):5446-5453. https://doi.org/10.1021/jf300348e

WEI, F.; TANOKURA, M. 2015. Chapter 10 - Chemical Changes in the Components of Coffee Beans during Roasting, In Coffee in Health and Disease Prevention, edited by Victor R. Preedy, Academic Press: 83-91

WORKU, M.; MEULENAER, B.; DUCHATEAU, L.; BOECKX, P. 2018. Effect of altitude on biochemical composition and quality of green Arabica coffee beans can be affected by shade and postharvest processing method. Food Res. Internal. (United States) 108:278-285. https://doi.org/10.1016/j.foodres.2017.11.016

Citado por