Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano

Contenido principal del artículo

Autores

Sindy Escobar http://orcid.org/0000-0002-7247-119X
Claudia Bernal http://orcid.org/0000-0001-9117-0483
Monica Mesa http://orcid.org/0000-0002-6175-6384

Resumen

 


En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el proceso de purificación por extracción líquido-líquido. Las entidades de glicerilo libre favorecen su incorporación en nanopartículas de N-succinil-quitosano, con un tamaño de alrededor de 185±77nm, que son promisorias para los productos de protección solar.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M.; YOUSEFI, P.; MOHAMMADI, J.; BRASK, J. 2016. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 91:196-206.
https://doi.org/10.1016/j.renene.2016.01.053

2. BASSI, J.J.; TODERO, L.M.; LAGE, F.A.P.; KHEDY, G.I.; DUCAS, J.D.; CUSTÓDIO, A.P.; PINTO, M.A.; MENDES, A.A. 2016. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Internal J. Biological Macromolecules. 92:900-909.
https://doi.org/10.1016/j.ijbiomac.2016.07.097

3. BASTIDA, A.; SABUQUILLO, P.; ARMISEN, P.; FERNÁNDEZ-LAFUENTE, R.; HUGUET, J.; GUISÁN, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering. 58(5):486-493.
https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9

4. BERNAL, C.; POVEDA-JARAMILLO, J.C.; MESA, M. 2018. Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chemical Engineering J. 334:760-767.
https://doi.org/10.1016/j.cej.2017.10.082

5. CIPOLATTI, E.P.; VALÉRIO, A.; NINOW, J.L.; DE OLIVEIRA, D.; PESSELA, B.C. 2016. Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. Biochemical Engineering J. 112:54-60.
https://doi.org/10.1016/j.bej.2016.04.006

6. ESCOBAR, S.; BERNAL, C.; BOLIVAR, J.M.; NIDETZKY, B.; LÓPEZ-GALLEGO, F.; MESA, M. 2018. Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis. 449:106-113.
https://doi.org/10.1016/j.mcat.2018.02.024

7. FERENC, W.; CRISTÓVÃO, B.; SARZYŃSKI, J.; SADOWSKI, P. 2012. Complexes of the selected transition metal ions with 4-methoxycinnamic acid: Physico-chemical properties. J. Thermal Analysis and Calorimetry. 110(2):739-748.
https://doi.org/10.1007/s10973-011-1935-5

8. FERNANDEZ-LAFUENTE, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Molecular Catalysis B: Enzymatic. 62(3):197-212.
https://doi.org/10.1016/j.molcatb.2009.11.010

9. FERNANDEZ-LORENTE, G.; CABRERA, Z.; GODOY, C.; FERNANDEZ-LAFUENTE, R.; PALOMO, J.M.; GUISAN, J.M. 2008. Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry. 43(10):1061-1067.
https://doi.org/10.1016/j.procbio.2008.05.009

10. HANSON, K.M.; NARAYANAN, S.; NICHOLS, V.M.; BARDEEN, C.J. 2015. Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochemical and Photobiological Sciences. 14(9):1607–1616.
https://doi.org/10.1039/c5pp00074b

11. HOLSER, R.A. 2008. Kinetics of cinnamoyl glycerol formation. JAOCS, J. the American Oil Chemists’ Society. 85(3):221-225.
https://doi.org/10.1007/s11746-007-1189-3

12. HOLSER, R.A.; MITCHELL, T.R.; HARRY-O’KURU, R.E.; VAUGHN, S.F.; WALTER, E.; HIMMELSBACH, D. 2008. Preparation and Characterization of 4-Methoxy Cinnamoyl Glycerol. J. American Oil Chemists’ Society. 85(4):347-351.
https://doi.org/10.1007/s11746-008-1197-y

13. KATZ, L.M.; DEWAN, K.; BRONAUGH, R.L. 2015. Nanotechnology in cosmetics. Food and Chemical Toxicology. 85:127-137.
https://doi.org/10.1016/j.fct.2015.06.020

14. KUO, S.-J.; PARKIN, K.L. 1996. Solvent polarity influences product selectivity of lipase-mediated esterification reactions in microaqueous media. J. American Oil Chemists’ Society. 73(11):1427-1433.
https://doi.org/10.1007/BF02523507

15. LEE, C.H.; PARKIN, K.L. 2001. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnology and Bioengineering. 75(2):219-227.
https://doi.org/10.1002/bit.10009

16. LEE, G.S.; WIDJAJA, A.; JU, Y.H. 2006. Enzymatic synthesis of cinnamic acid derivatives. Biotechnology Letters. 28(8):581-585.
https://doi.org/10.1007/s10529-006-0019-2

17. MATTE, C.R.; BUSSAMARA, R.; DUPONT, J.; RODRIGUES, R.C.; HERTZ, P.F.; AYUB, M.A.Z. 2014. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: Characterization and applications. Applied Biochemistry and Biotechnology. 172(5):2507-2520.
https://doi.org/10.1007/s12010-013-0702-4

18. MONSALVE, Y.; SIERRA, L.; LÓPEZ, B.L. 2015. Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromolecular Symposia. 354(1):91-98.
https://doi.org/10.1002/masy.201400128

19. NAIK, S.; BASU, A.; SAIKIA, R.; MADAN, B.; PAUL, P.; CHATERJEE, R.; BRASK, J.; SVENDSEN, A. 2010. Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. J. Molecular Catalysis B: Enzymatic. 65:18-23.
https://doi.org/10.1016/j.molcatb.2010.01.002

20. NOHYNEK, G.J.; DUFOUR, E.K. 2012. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Archives of Toxicology. 86(7):1063-1075.
https://doi.org/10.1007/s00204-012-0831-5

21. PALACIO, J.; MONSALVE, Y.; RAMÍREZ-RODRÍGUEZ, F.; LÓPEZ, B. 2020. Study of encapsulation of polyphenols on succinyl-chitosan nanoparticles. J. Drug Delivery Science and Technology. 57:101610.
https://doi.org/10.1016/j.jddst.2020.101610

22. PATIL, D.; DEV, B.; NAG, A. 2011. Lipase-catalyzed synthesis of 4-methoxy cinnamoyl glycerol. J. Molecular Catalysis B: Enzymatic. 73(1-4):5-8.
https://doi.org/10.1016/j.molcatb.2011.07.002

23. SAHATSAPAN, N.; ROJANARATA, T.; NGAWHIRUNPAT, T.; OPANASOPIT, P.; PATROJANASOPHON, P. 2019. Catechol-functionalized succinyl chitosan for novel mucoadhesive drug delivery. Key Engineering Materials. 819:21-26.
https://doi.org/10.4028/www.scientific.net/KEM.819.21

24. SANTOS, A.C.; MORAIS, F.; SIMÕES, A.; PEREIRA, I.; SEQUEIRA, J.A.D.; PEREIRA-SILVA, M.; VEIGA, F.; RIBEIRO, A. 2019. Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery. 16(4):313-330.
https://doi.org/10.1080/17425247.2019.1585426

25. SHAATH, N.A. 2010. Ultraviolet filters. Photochem. Photobiol. Sci. 9(4):464-469.
https://doi.org/10.1039/B9PP00174C

26. SOTO, I.D.; ESCOBAR, S.; MESA, M. 2017. Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. Materials Science and Engineering C. 79:525-532.
https://doi.org/10.1016/j.msec.2017.05.088

27. SUN, W.J.; ZHAO, H.X.; CUI, F.J.; LI, Y.H.; YU, S.L.; ZHOU, Q.; QIAN, J.Y.; DONG, Y. 2013. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chemistry Central J. 7(1):1-13.
https://doi.org/10.1186/1752-153X-7-114

28. YESILOGLU, Y.; KILIC, I. 2004. Lipase-Catalyzed Esterification of Glycerol and Oleic Acid. JAOCS. J. American Oil Chemists’ Society. 81(3):281-284.
https://doi.org/10.1007/s11746-004-0896-5

29. ZHANG, C.-G.; ZHU, Q.-L.; ZHOU, Y.; LIU, Y.; CHEN, W.-L.; YUAN, Z.-Q.; YANG, S.-D.; ZHOU, X.-F.; ZHU, A.-J.; ZHANG, X.-N.; JIN, Y. 2014. N-succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International J. Nanomedicine. 9(1):2919-2932.
https://doi.org/10.2147/IJN.S59799

30. ZHOU, Z.; INAYAT, A.; SCHWIEGER, W.; HARTMANN, M. 2012. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials. 154:133-141.
https://doi.org/10.1016/j.micromeso.2012.01.003

Descargas

La descarga de datos todavía no está disponible.