La quiescencia como estado estratégico del proceso infectivo de especies de Colletotrichum

Quiescence as a strategic stage for the infective process of Colletotrichum species

Contenido principal del artículo

Resumen

Colletotrichum es un hongo ascomicete, con diversidad de especies agrupadas en complejos o clados y se asocia a enfermedades conocidas, como "Antracnosis" y afecta significativamente especies de frutas tropicales y subtropicales. Las infecciones ocurren en el campo y postcosecha; los estados quiescentes son los principales responsables de pérdidas en postcosecha. Se realizó un análisis de esta etapa pre-infectiva, a partir de publicaciones consultadas. La infección está modulada por la duración del período de quiescencia del hongo durante las etapas vegetativa o pre-productivas de los árboles y está determinado por las respuestas bioquímicas del hospedante y la actividad del patógeno. Una vez se activa el patógeno, se desarrolla un proceso infeccioso necrotrófico. La quiescencia de Colletotrichum se ha estudiado, principalmente, en frutas subtropicales y especies hortícolas y destacan el papel de compuestos volátiles, metabolitos y enzimas en la duración y en la pérdida de la quiescencia, así como las respuestas diferenciales, según la fenología y el genotipo. Análisis transcriptómicos y proteómicos de la interacción hospedante-hongo han revelado el papel de genes en la ocurrencia y pérdida de quiescencia. Conocer la quiescencia de Colletotrichum en frutas tropicales es necesario para hacer más eficiente el manejo de la enfermedad. Se ha estudiado la detección e inducción de infecciones quiescentes y estudios genómicos han permitido entender su ocurrencia durante la infección; sin embargo, en cultivos en el trópico, como el mango, un cultivo importante en Colombia, las preguntas sobre las especies asociadas y la biología de la quiescencia de estas, aún están sin respuesta.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ADIKARAM, N.; KARUNANAYAKE, C.; SINNIAH, G.; VITHANAGE, I.K.; YAKANDAWALA, D. 2015. Fungal quiescence in fruit: an attempt to avoid toxic substances? Journal of Mycopathological Research. 53:1-7.

ADIKARAM, N.K.B.; KARUNANAYAKE, L.C.; SINNIAH, G.D.; ABAYASEKARA, C.L.; KOMALA VITHANAGE, S.; YAKANDAWALA, D.M.D. 2017. A review of the role for natural defenses in the management of Colletotrichum rotting of ripe mangoes. Acta Horticulturae. 1183:229-232.

https://doi.org/10.17660/actahortic.2017.1183.32

AHIMERA, N.; DRIEVER, G.F.; MICHAILIDES, T.J. 2003. Relationships among propagule numbers of Botryosphaeria dothidea, latent infections, and severity of panicle and shoot blight in pistachio orchards. Plant Disease. 87(7):846-853.

https://doi.org/10.1094/PDIS.2003.87.7.846

ALKAN, N.; ESPESO, E.A.; PRUSKY, D. 2013a. Virulence regulation of phytopathogenic fungi by pH. Antioxidants & Redox Signaling. 19(9):1012-1025.

https://doi.org/10.1089/ars.2012.5062

ALKAN, N.; FRIEDLANDER, G.; MENT, D.; PRUSKY, D.; FLUHR, R. 2015. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist. 205(2):801-815.

https://doi.org/10.1111/nph.13087

ALKAN, N.; MENG, X.; FRIEDLANDER, G.; REUVENI, E.; SUKNO, S.; SHERMAN, A.; THON, M.; FLUHR, R.; PRUSKY, D. 2013b. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Molecular Plant-Microbe Interactions. 26(11):1345-1358.

https://doi.org/10.1094/MPMI-03-13-0080-R

AMARAL, D.D.; MONTEIRO, A.L.R.; DA SILVA, E.I.; DE OLIVEIRA LINS, S.R.; ALVES DE OLIVEIRA, S.M. 2017. Frequency of quiescent fungi and post-harvest alternative management of stem end rot in papaya. Revista Caatinga. 30(3):786-793.

https://doi.org/10.1590/1983-21252017v30n327rc

AVER’YANOV, A.A.; BELOZERSKAYA, T.A.; GESSLER, N.N. 2012. Fungus Development and Reactive Oxygen: Phytopathological Aspects. En: Witzany, G. (ed.). Biocommunication of Fungi. Springer (Berlin). p.261-271.

BENO-MOUALEM, D.; PRUSKY, D. 2000. Early events during quiescent infection development by Colletotrichum gloeosporioides in unripe avocado fruits. Phytopathology. 90(5):553-559.

http://dx.doi.org/10.1094/PHYTO.2000.90.5.553

BINYAMINI, N.; SCHIFFMANN-NADEL, M. 1972. The utilization in vitro of different avocado fruit constituents by Colletotrichum gloeosporioides. Mycologia. 64(4):916-919.

BLANCO-ULATE, B.; VINCENTI, E.; POWELL, A.L.T.; CANTU, D. 2013. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Frontiers in Plant Science. 4:142.

https://doi.org/10.3389/fpls.2013.00142

BOWEN, J.; BILLING, D.; CONNOLLY, P.; SMITH, W.; COONEY, J.; BURDON, J. 2018. Maturity, storage and ripening effects on anti-fungal compounds in the skin of “Hass” avocado fruit. Postharvest Biology and Technology. 146:43-50.

https://doi.org/10.1016/j.postharvbio.2018.08.005

CHENG, Y.-J.; WU, Y.-J.; LEE, F.-W.; OU, L.-Y.; CHEN, C.-N.; CHU, Y.-Y.; KUAN, Y.-C. 2022. Impact of storage condition on chemical composition and antifungal activity of pomelo extract against Colletotrichum gloeosporioides and anthracnose in Post-harvest mango. Plants. 11(15):2064.

https://doi.org/10.3390/plants11152064

CHOWDAPPA, P.; GOWDA, S.; CHETHANA, C.S.; MADHURA, S. 2014. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. African Journal of Microbiology Research. 8(17):1803-1812.

https://doi.org/10.5897/AJMR2013.6584

COJOCARU, M.; DROBY, S.; GLOTTER, E.; GOLDMAN, A.; GOTTLIEB, H.E.; JACOBY, B.; PRUSKY, D. 1986. 5-(12-Heptadecenyl)-resorcinol, the major component of the antifungal activity in the peel of mango fruit. Phytochemistry. 25(5):1093-1095.

https://doi.org/10.1016/S0031-9422(00)81560-5

CZEMMEL, S.; GALARNEAU, E.R.; TRAVADON, R.; MCELRONE, A.J.; CRAMER, G.R.; BAUMGARTNER, K. 2015. Genes expressed in grapevine leaves reveal latent wood infection by the fungal pathogen Neofusicoccum parvum. PloS One. 10:e0121828.

https://doi.org/10.1371/journal.pone.0121828

DE LAPEYRE DE BELLAIRE, L.; CHILLET, M.; MOURICHON, X. 2000. Elaboration of an early quantification method of quiescent infections of Colletotrichum musae on bananas. Plant Disease. 84(2):128-133.

http://dx.doi.org/10.1094/PDIS.2000.84.2.128

DELAYE, L.; GARCÍA-GUZMÁN, G.; HEIL, M. 2013. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? Fungal Diversity. 60:125-135.

https://doi.org/10.1007/s13225-013-0240-y

DE LORENZO, G.; D'OVIDIO, R.; CERVONE, F. 2001. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annual review of phytopathology. 39:313-335.

https://doi.org/10.1146/annurev.phyto.39.1.313

DISKIN, S.; FEYGENBERG, O.; MAURER, D.; DROBY, S.; PRUSKY, D.; ALKAN, N. 2017. Microbiome alterations are correlated with occurrence of postharvest Stem-end rot in mango fruit. Phytobiomes. 1(3):117-127.

https://doi.org/10.1094/PBIOMES-05-17-0022-R

DROBY, S.; PRUSKY, D.; JACOBY, B.; GOLDMAN, A. 1986. Presence of antifungal compounds in the peel of mango fruits and their relation to latent infections of Alternaria alternata. Physiological and Molecular Plant Pathology. 29(2):173-183.

https://doi.org/10.1016/S0048-4059(86)80019-4

FISCHER, I.H.; DE MORAES, M.F.; FIRMINO, A.C.; AMORIM, L. 2019. Detection and epidemiological progress of quiescent avocado diseases. Ciência Rural. 49(8):e20180731.

http://dx.doi.org/10.1590/0103-8478cr20180731

FISCHER, I.H.; SOARES-COLLETTI, A.R.; PALHARINI, M.C.D.A.; PARISI, M.C.M.; AMORIM, L. 2017. Temporal progress and spatial patterns of quiescent diseases in guava influenced by sanitation practices. Scientia Agricola. 74(1):68-76.

http://dx.doi.org/10.1590/1678-992X-2015-0425

FLAISHMAN, M.A.; HWANG, C.S.; KOLATTUKUDY, P.E. 1995. Involvement of protein phosphorylation in the induction of appressorium formation in Colletotrichum gloeosporioides by its host surface wax and ethylene. Physiological and Molecular Plant Pathology. 47(2):103-117.

https://doi.org/10.1006/pmpp.1995.1046

FLAISHMAN, M.A.; KOLATTUKUDY, P.E. 1994. Timing of fungal invasion using host’s ripening hormone as a signal. Proceedings of the National Academy of Sciences. 91:6579-6583.

https://doi.org/10.1073/pnas.91.14.6579

FREEMAN, S.; HOROWITZ, S.; SHARON, A. 2001. Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology. 91(10):986-992.

https://doi.org/10.1094/PHYTO.2001.91.10.986

FU, M.; BAI, Q.; ZHANG, H.; GUO, Y.; PENG, Y.; ZHANG, P.; SHEN, L.; HONG, N.; XU, W.; WANG, G. 2022. Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms. Frontiers in Plant Science. 13:761133.

https://doi.org/10.3389/fpls.2022.761133

GAN, P.; IKEDA, K.; IRIEDA, H.; NARUSAKA, M.; O'CONNELL, R.J.; NARUSAKA, Y.; TAKANO, Y.; KUBO, Y.; SHIRASU, K. 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist. 197(4):1236-1249.

https://doi.org/10.1111/nph.12085

GAÑÁN, L.; ÁLVAREZ, E.; CASTAÑO ZAPATA, J. 2015. Identificación genética de aislamientos de Colletotrichum spp. causantes de Antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista Academia Colombiana de Ciencias Exactas Física y Naturales. 39(152):339-347.

http://dx.doi.org/10.18257/raccefyn.192

GONZAGA, L.L.; COSTA, L.E.O.; SANTOS, T.T.; ARAÚJO, E.F.; QUEIROZ, M.V. 2015. Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. Journal of Applied Microbiology. 118(2):485-496.

https://doi.org/10.1111/jam.12696

GUÉDEZ, C.; RODRÍGUEZ, D. 2021. Infecciones quiescentes por Colletotrichum gloeosporioides en las diferentes etapas de desarrollo del fruto de guayaba (Psidium guajava L.) en dos épocas de producción. Revista de la Facultad de Agronomía de la Universidad del Zulia. 38(4):751-770.

https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4.01

GUETSKY, R.; KOBILER, I.; WANG, X.; PERLMAN, N.; GOLLOP, N.; AVILA-QUEZADA, G.; HADAR, I.; PRUSKY, D. 2005. Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits. Phytopathology. 95(11):1341-1348.

https://doi.org/10.1094/PHYTO-95-1341

HAILE, Z.M.; PILATI, S.; SONEGO, P.; MALACARNE, G.; VRHOVSEK, U.; ENGELEN, K.; TUDZINSKY, P.; ZOTTINI, M.; BARALDI, E.; MOSER, C. 2017. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Plant, Cell & Environment. 40(8):1409-1428.

https://doi.org/10.1111/pce.12937

HODGES, D.M. 2003. Chapter 1. Overview: Oxidative stress and postharvest produce. En: Postharvest oxidative stress in horticultural crops. CRC Press (New York). p.1-12.

HONGER, J.O.; OFFEI, S.K.; ODURO, K.A.; ODAMTTEN, G.T.; NYAKU, S.T. 2014. Identification and species status of the mango biotype of Colletotrichum gloeosporioides in Ghana. European Journal of Plant Pathology. 140:455-467.

https://doi.org/10.1007/s10658-014-0480-z

HUANG, X.; LIU, T.; ZHOU, C.; HUANG, Y.; LIU, X.; YUAN, H. 2021. Antifungal activity of essential oils from three Artemisia species against Colletotrichum gloeosporioides of mango. Antibiotics. 10(11):1331.

https://doi.org/10.3390/antibiotics10111331

HÜCKELHOVEN, R. 2007. Cell wall–associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology. 45:101-127.

https://doi.org/10.1146/annurev.phyto.45.062806.094325

HYDE, K.D.; SOYTONG, K. 2008. The fungal endophyte dilemma. Fungal Diversity. 33:163-173.

ISMAIL, A.M.; CIRVILLERI, G.; YASEEN, T.; EPIFANI, F.; PERRONE, G.; POLIZZI, G. 2015. Characterization of Colletotrichum species causing Anthracnose disease of mango in Italy. Journal of Plant Pathology. 97(1):167-171.

http://dx.doi.org/10.4454/JPP.V97I1.011

JAIMUN, R.; SANGSUWAN, J. 2019. Efficacy of chitosan‐coated paper incorporated with vanillin and ethylene adsorbents on the control of anthracnose and the quality of Nam Dok Mai mango fruit. Packaging Technology and Science. 32(8):383-394.

https://doi.org/10.1002/pts.2446

JAYAWARDENA, R.S.; BHUNJUN, C.S.; HYDE, K.D.; GENTEKAKI, E.; ITTHAYAKORN, P. 2021. Colletotrichum: lifestyles, biology, morpho-species, species complexes and accepted species. Mycosphere. 12(1):519-669.

https://doi.org/10.5943/mycosphere/12/1/7

JOHNSON, G.I.; MEAD, A.J.; COOKE, A.W.; DEAN, J.R. 1992. Mango stem end rot pathogens‐Fruit infection by endophytic colonization of the inflorescence and pedicel. Annals of Applied Biology. 120(2):225-234.

https://doi.org/10.1111/j.1744-7348.1992.tb03420.x

JOY, P.P.; SHERIN, C.G. 2016. Diseases of passion fruit (Passiflora edulis) and their management. In: Pandey, A.K.; Mall, P. (eds.). Insect pests management of fruit crops. Biotech. p.453-470.

KARUNANAYAKE, L.C.; ADIKARAM, N.; KUMARIHAMY, B.M.; BANDARA, B.M.; ABAYASEKARA, C. 2011. Role of antifungal gallotannins, resorcinols and chitinases in the constitutive defence of immature mango (Mangifera indica L.) against Colletotrichum gloeosporioides. Journal of Phytopathology. 159(10):657-664.

https://doi.org/10.1111/j.1439-0434.2011.01818.x

KIENZLE, S.; CARLE, R.; SRUAMSIRI, P.; TOSTA, C.; NEIDHART, S. 2014. Occurrence of Alk(en)ylresorcinols in the fruits of two mango (Mangifera indica L.) cultivars during on-tree maturation and postharvest storage. Journal of Agricultural and Food Chemistry. 62(1):28-40.

https://dx.doi.org/10.1021/jf4028552

KLEEMANN, J.; RINCON-RIVERA, L.J.; TAKAHARA, H.; NEUMANN, U.; VAN THEMAAT, E.V.L.; VAN DER DOES, H.C.; HACQUARD, S.; STÜBER, K.; WILL, I.; SCHMALENBACH, W.; SCHMELZER, E.; O´CONNELL, R.J. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathogens. 8:e1002643.

https://doi.org/10.1371/journal.ppat.1002643

KOGEL, K.H.; FRANKEN, P.; HÜCKELHOVEN, R. 2006. Endophyte or parasite–what decides? Current Opinion in Plant Biology. 9(4):358-363.

https://doi.org/10.1016/j.pbi.2006.05.001

KORN, M.; SCHMIDPETER, J.; DAHL, M.; MÜLLER, S.; VOLL, L.M.; KOCH, C. 2015. A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration. PloS One. 10:e0125960.

https://doi.org/10.1371/journal.pone.0125960

KUMARI, R.; SINGH, R. 2017. Anthracnose of mango incited by Colletotrichum gloeosporioides: A comprehensive review. International Journal Pure & Applied Biosciense. 5(1):48-56.

http://dx.doi.org/10.18782/2320-7051.2478

LATTANZIO, V.; DI VENERE, D.; LINSALATA, V.; BERTOLINI, P.; IPPOLITO, A.; SALERNO, M. 2001. Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabunda. Journal of Agricultural and Food Chemistry. 49(12):5817-5821.

https://doi.org/10.1021/jf010255b

LATUNDE‐DADA, A.O. 2001. Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout. Molecular Plant Pathology. 2(4):187-198.

https://doi.org/10.1046/j.1464-6722.2001.00069.x

LESTER, G. 2003. Oxidative stress affecting fruit senescence. Postharvest oxidative stress in horticultural crops. CRC Press (New York). p.113-129.

LI, X.; WU, Y.; LIU, Z.; ZHANG, C. 2017. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides. Microbiological Research. 197:39-48.

https://doi.org/10.1016/j.micres.2017.01.006

LIU, F.; CAI, L.; CROUS, P.W.; DAMM, U. 2014. The Colletotrichum gigasporum species complex. Persoonia-Molecular Phylogeny and Evolution of Fungi. 33:83-97.

http://dx.doi.org/10.3767/003158514X684447

LIU, F.; MA, Z.Y.; HOU, L.W.; DIAO, Y.Z.; WU, W.P.; DAMM, U.; SONG, S.; CAI, L. 2022. Updating species diversity of Colletotrichum, with a phylogenomic overview. Studies in Mycology. 101(1):1-56.

https://doi.org/10.3114/sim.2022.101.01

MANAMGODA, D.S.; UDAYANGA, D.; CAI, L.; CHUKEATIROTE, E.; HYDE, K.D. 2013. Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Diversity. 61:107-115.

https://doi.org/10.1007/s13225-013-0256-3

MENGISTE, T. 2012. Plant immunity to necrotrophs. Annual review of phytopathology. 50:267-294.

https://doi.org/10.1146/annurev-phyto-081211-172955

MENT, D.; ALKAN, N.; LURIA, N.; BI, F.-C.; REUVENI, E.; FLUHR, R.; PRUSKY, D. 2015. A role of AREB in the regulation of PACC-dependent acid-expressed-genes and pathogenicity of Colletotrichum gloeosporioides. Molecular Plant-Microbe Interactions. 28(2):154-166.

https://doi.org/10.1094/MPMI-09-14-0252-R

MIYARA, I.; SHAFRAN, H.; DAVIDZON, M.; SHERMAN, A.; PRUSKY, D. 2010. pH regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity. Molecular Plant-Microbe Interactions. 23(3):304-316.

https://doi.org/10.1094/MPMI-23-3-0304

O’CONNELL, R.J.; THON, M.R.; HACQUARD, S.; AMYOTTE, S.G.; KLEEMANN, J.; TORRES, M.F.; DAMM, U.; BUIATES, E.A.; EPSTEINS, L.; ALKAN, N.; ALTMÜLLER, J.; ALVARADO-BALDERRAMA, L.; BAUSER, C.A.; BECKER, C.; BIRREN, B.W.; CHEN, Z.; CHOI, J.; CROUCH, J.A.; DUVICK, J.P.; FARMAN, M.A.; GAN, P.; HEIMAN, D.; HENRISSAT, B.; HOWARD, R.J.; KABBAGE, M.; KOCH, C.; KRACHER, B.; KUBO, Y.; LAW, A.D.; LEBRUN, M.-H.; LEE, Y.-H.; MIYARA, I.; MOORE, N.; NEUMANN, U.; NORDSTRÖM, K.; PANACCIONE, D.G.; PANSTRUGA, R.H.; PLACE, M.; PROCTOR, R.H.; PRUSKY, D.; RECH, G.; REINHARDT, R.; ROLLINS, J.A.; ROUNSLEY, S.; SCHARDL, C.L.; SCHWARTZ, D.C.; SHENOY, N.; SHIRASU, K.; SIKHAKOLLI, U.R.; STÜBER, K.; SUKNO, S.A.; SWEIGARD, J.A.; TAKANO, Y.; TAKAHARA, H.; TRAIL, F.; VAN DER DOES, H.C.; VOLL, L.M.; WILL, I.; YOUNG, S.; ZENG, Q.; ZHANG, J.; ZHOU, S.; DICKMAN, M.B.; SCHULZE-LEFERT, P.; VAN THEMAAT, E.V.L.; MA, L.-J.; VAILLANCOURT, L.J. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics. 44:1060-1065.

https://doi.org/10.1038/ng.2372

PÁEZ REDONDO, A.R. 2003. Tecnologías sostenibles para el manejo de la antracnosis (Colletotrichum gloesporioides (Penz.) Penz. y Sacc.) en papaya (Carica papaya L.) y mango (Mangifera indica L.). Corporación colombiana de investigación agropecuaria-AGROSAVIA (Bogotá, Colombia). 18p.

PANIAGUA, C.; POSÉ, S.; MORRIS, V.J.; KIRBY, A.R.; QUESADA, M.A.; MERCADO, J.A. 2014. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of botany. 114(6):1375-1383.

https://doi.org/10.1093/aob/mcu149

PARAMASIVAN, M.; MOHAN, S.; SYED ALI, G.; MATHIYAZHAGAN, S.; MUTHUKRISHANAN, N. 2009. Detection of latent infections in mango fruit with herbicides. Archives of Phytopathology and Plant Protection. 42(4):318-326.

https://doi.org/10.1080/03235400601069696

PARTHASARATHY, S.; MOHAMMAD FAISAL, P.; PRABAKAR, K.; THIRIBHUVANAMALA, G.; RAJALAKSHMI, J. 2015. Profiling of antifungal compounds from n-hexane extracts of mango fruits against major post-harvest pathogens. Annals of Plant and Soil Research. 17:311-316.

PERES, N.A.; TIMMER, L.W.; ADASKAVEG, J.E.; CORRELL, J.C. 2005. Lifestyles of Colletotrichum acutatum. Plant Disease. 89(8):784-796.

https://dx.doi.org/10.1094/PD-89-0784

PHOTITA, W.; TAYLOR, P.W.J.; FORD, R.; HYDE, K.D.; LUMYONG, S. 2005. Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Diversity. 18:117-133.

PLOETZ, R.C. 2007. Diseases of tropical perennial crops: challenging problems in diverse environments. Plant Disease. 91(6):644-663.

https://doi.org/10.1094/PDIS-91-6-0644

PODILA, G.K.; ROGERS, L.M.; KOLATTUKUDY, P.E. 1993. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiology. 103(1):267-272.

https://doi.org/10.1104/pp.103.1.267

PRUSKY, D.; ALKAN, N.; MENGISTE, T.; FLUHR, R. 2013. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology. 51:155-176.

https://doi.org/10.1146/annurev-phyto-082712-102349

PRUSKY, D.; BARAD, S.; MENT, D.; BI, F. 2016b. The pH modulation by fungal secreted molecules: a mechanism affecting pathogenicity by postharvest pathogens. Israel Journal of Plant Sciences. 63:22-30.

https://doi.org/10.1080/07929978.2016.1151290

PRUSKY, D.; KOBILER, I.; AKERMAN, M.; MIYARA, I. 2006. Effect of acidic solutions and acidic prochloraz on the control of postharvest decay caused by Alternaria alternata in mango and persimmon fruit. Postharvest Biology and Technology. 42(2):134-141.

https://doi.org/10.1016/j.postharvbio.2006.06.001

PRUSKY, D.; WATTAD, C.; KOBILER, I. 1996. Effect of ethylene on activation of lesion development from quiescent infections of Colletotrichum gloeosporioides in avocado fruits. Molecular Plant-Microbe Interactions. 9(9):864-868.

PRUSKY, D.; ZIV, C. 2019. Mechanisms of fungal quiescence during development and ripening of fruits. In: Palou, L.; Smilanick, J.L. (eds.). Postharvest pathology of fresh horticultural produce. CRC Press. p.407-436.

PRUSKY, D.B.; BI, F.; MORAL, J.; BARAD, S. 2016a. How does host carbon concentration modulate the lifestyle of postharvest pathogens during colonization? Frontiers in Plant Science. 7:1306.

https://doi.org/10.3389/fpls.2016.01306

PRUSKY, D.B.; SIONOV, E. 2021. Special Issue “Interplay between Fungal Pathogens and Harvested Crops and Fruits”. Microorganisms. 9(3):553.

https://doi.org/10.3390/microorganisms9030553

QUINTERO-MERCADO, A.; DANGON-BERNIER, F.; PÁEZ-REDONDO, A. 2019. Endophytic isolation of Colletotrichum spp. from the leaves and branches of mango (Mangifera indica l.) cultivar Azúcar in the municipality of Ciénaga, Magdalena, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 43(166):65-77.

https://doi.org/10.18257/raccefyn.788

RAJARAMMOHAN, S. 2021. Redefining plant-necrotroph interactions: the thin line between hemibiotrophs and necrotrophs. Frontiers in Microbiology. 12:673518.

https://doi.org/10.3389/fmicb.2021.673518

RANATHUNGE, N.P.; SANDANI, H.B.P. 2016. Deceptive behaviour of Colletotrichum truncatum: strategic survival as an asymptomatic endophyte on non-host species. Journal of Plant Protection Research. 56(2):157-162.

https://doi.org/10.1515/jppr-2016-0026

RODRIGUEZ, R.J.; WHITE JR, J.F.; ARNOLD, A.E.; REDMAN, R.S. 2009. Fungal endophytes: diversity and functional roles. New phytologist. 182(2):314-330.

https://doi.org/10.1111/j.1469-8137.2009.02773.x

SANZANI, S.M.; REVERBERI, M.; PUNELLI, M.; IPPOLITO, A.; FANELLI, C. 2012. Study on the role of patulin on pathogenicity and virulence of Penicillium expansum. International Journal of Food Microbiology. 153(3):323-331. https://doi.org/10.1016/j.ijfoodmicro.2011.11.021

SHARMA, M.; KULSHRESTHA, S. 2015. Colletotrichum gloeosporioides: an anthracnose causing pathogen of fruits and vegetables. Biosciences Biotechnology Research Asia. 12(2):1233-1246.

http://dx.doi.org/10.13005/bbra/1776

SHI, X.-C.; WANG, S.-Y.; DUAN, X.-C.; WANG, Y.-Z.; LIU, F.-Q.; LABORDA, P. 2021. Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Crop Protection. 141:105454.

https://doi.org/10.1016/j.cropro.2020.105454

SHNAIDERMAN, C.; MIYARA, I.; KOBILER, I.; SHERMAN, A.; PRUSKY, D. 2013. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. Molecular Plant-Microbe Interactions. 26(3):345-355.

https://doi.org/10.1094/MPMI-07-12-0170-R

SIDDIQUI, Y.; ALI, A. 2014. Chapter 11-Colletotrichum gloeosporioides (Anthracnose). In: Bautista-Baños, S. (ed.). Postharvest Decay. Control Strategies. Academic Press. p.337-371.

https://doi.org/10.1016/B978-0-12-411552-1.00011-9

SINNIAH, G.D.; ADIKARAM, N.K.B.; ABAYASEKARA, C.L. 2012. Differential defense responses expressed in mango (Mangifera indica L.) cultivars resistant and susceptible to Colletotrichum gloeosporioides. Indian Phytopathology. 65(4):2-6.

TALHINHAS, P.; BARONCELLI, R. 2021. Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity. 110:109-198.

https://doi.org/10.1007/s13225-021-00491-9

TIAN, S.; QIN, G.; LI, B. 2013. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology. 82:593-602.

https://doi.org/10.1007/s11103-013-0035-2

VIEIRA, W.A.S.; MICHEREFF, S.J.; DE MORAIS JR, M.A.; HYDE, K.D.; CÂMARA, M.P.S. 2014. Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Diversity. 67:181-202.

https://doi.org/10.1007/s13225-014-0293-6

VILLAFANA, R.T.; RAMPERSAD, S.N. 2020. Diversity, structure, and synteny of the cutinase gene of Colletotrichum species. Ecology and evolution. 10(3):1425-1443.

https://doi.org/10.1002/ece3.5998

VIVEKANANTHAN, R.; RAVI, M.; RAMANATHAN, A.; SAMIYAPPAN, R. 2004. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defense against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology. 20:235-244.

https://doi.org/10.1023/B:WIBI.0000023826.30426.f5

WANG, A.; TAN, D.; TAKAHASHI, A.; ZHONG LI, T.; HARADA, T. 2007. MdERFs, two ethylene-response factors involved in apple fruit ripening. Journal of Experimental Botany. 58(13):3743-3748.

https://doi.org/10.1093/jxb/erm224

WANIGASEKARA, U.W.N.P.; ADIKARAM, N.K.B.; ABAYASEKARA, C.L. 2014. Pre-harvest chemical elicitor treatment enhances induced resistance in harvested banana fruit cv.‘Embul’ and reduces Anthracnose caused by Colletotrichum musae. Journal of the National Science Foundation of Sri Lanka. 42(2):101-110.

https://doi.org/10.4038/jnsfsr.v42i2.6994

ZAKARIA, L. 2021. Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops-A review. Agriculture. 11(4):297.

https://doi.org/10.3390/agriculture11040297

ZAPATA-NARVÁEZ, Y.A.; IZQUIERDO-GARCÍA, L.F.; BOTINA-AZAÍN, B.L.; BELTRÁN-ACOSTA, C.R. 2021. Efficacy of microbial antagonists and chitin in the control of Colletotrichum gloeosporioides in postharvest of mango cv. Azúcar. Revista mexicana de fitopatología. 39(2):248-265.

https://doi.org/10.18781/r.mex.fit.2102-1

ZHU, X.; CAO, J.; WANG, Q.; JIANG, W. 2008. Postharvest infiltration of BTH reduces infection of mango fruits (Mangifera indica L. cv. Tainong) by Colletotrichum gloeosporioides and enhances resistance inducing compounds. Journal of Phytopathology. 156(2):68-74.

https://doi.org/10.1111/j.1439-0434.2007.01320.x

Citado por