Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón

Scientific and technological watch on physical-enzymatic modification processes in starch granules

Contenido principal del artículo

Resumen

Las demandas actuales de las industrias hacen necesario recurrir a nuevas herramientas para la generación de desarrollo e innovación tecnológica, por lo cual, se ha identificado la necesidad de implementar tecnologías en la búsqueda de tendencias en el campo de los procesos de modificación de los materiales amiláceos. Este estudio tuvo por objetivo determinar la dinámica de producción científica, por medio de herramientas de innovación, como la vigilancia científica en la modificación de almidones por hidrólisis enzimática, asistida por tecnologías emergentes. Para ello, se realizó un análisis cuantitativo de los resultados, a partir de recopilaciones de datos derivados de bases científicas, reportados en clústeres y mapas de tendencias, con información sobre las principales revistas, autores, línea de tiempo, entidades y áreas de conocimiento en la modificación físico-enzimática del almidón. Esta vigilancia permitió identificar que las investigaciones se están orientando a las modificaciones duales y la aplicación de tecnologías emergentes (campos eléctricos, ultrasonido y microondas), como métodos alternativos en la modificación del almidón de cereales y tubérculos.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

AMINI, A.M.; RAZAVI, S.M.A.; MORTAZAVI, S.A. 2015. Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydrate Polymers. 122:282-292. https://doi.org/10.1016/j.carbpol.2015.01.020 DOI: https://doi.org/10.1016/j.carbpol.2015.01.020

ANDRADE, J.M.; RAMÍREZ PLAZAS, E.; QUINTERO, A. 2017. Vigilancia tecnológica del sector agroindustrial. Entornos. 30(2):23-35. https://doi.org/10.25054/01247905.1404 DOI: https://doi.org/10.25054/01247905.1404

ARROYO-DAGOBETH, E.D.; FIGUEROA-FLOREZ, J.A.; CADENA-CHAMORRO, E.; RODRIGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.G.; CERVERA-RICARDO, M.A. 2023. Structural, physicochemical, and psating properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana. 41(3):1-12. https://doi.org/10.15446/agron.colomb.v41n3.110111

BAI, T.G.; ZHANG, L.; QIAN, J.Y.; JIANG, W.; WU, M.; RAO, S.Q.; LI, Q.; ZHANG, C.; WU, C. 2021. Pulsed electric field pretreatment modifying digestion, texture, structure and flavor of rice. LWT. 13:110650. https://doi.org/10.1016/j.lwt.2020.110650 DOI: https://doi.org/10.1016/j.lwt.2020.110650

BARUA, S.; TUDU, K.; RAKSHIT, M.; SRIVASTAV, P.P.; 2021. Characterization and digestogram modeling of modified elephant foot yam (Amorphophallus paeoniifolius) starch using ultrasonic pretreated autoclaving. Journal of Food Process Engineering. 44(11):e13841. https://doi.org/10.1111/JFPE.13841 DOI: https://doi.org/10.1111/jfpe.13841

CAO, M.; GAO, Q. 2020. Effect of dual modification with ultrasonic and electric field on potato starch. International Journal of Biological Macromolecules. 150:637-643. https://doi.org/10.1016/j.ijbiomac.2020.02.008 DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.008

CHAKRABORTY, I.; GOVINDARAJU, I.; RONGPIPI, S.; MAHATO, K.K.; MAZUMDER, N. 2021. Effects of hydrothermal treatments on physicochemical properties and in vitro digestion of starch. Food Biophysics. 16(4):544-554. https://doi.org/10.1007/S11483-021-09687-7/TABLES/5 DOI: https://doi.org/10.1007/s11483-021-09687-7

CHANG, R.; LU, H.; BIAN, X.; TIAN, Y.; JIN, Z. 2021. Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocolloids. 110:106141. https://doi.org/10.1016/j.foodhyd.2020.106141 DOI: https://doi.org/10.1016/j.foodhyd.2020.106141

CHEN, B.R.; WANG, Z.M.; LIN, J.W.; WEN, Q.H.; XU, F.Y.; LI, J.; WANG, R.; ZENG, X.A. 2022. Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocolloids. 129:107655. https://doi.org/10.1016/j.foodhyd.2022.107655 DOI: https://doi.org/10.1016/j.foodhyd.2022.107655

CHI, C.; YANG, Y.; LI, S.; SHEN, X.; WANG, M.; ZHANG, Y.; ZHENG, X.; WENG, L. 2023. Starch intrinsic crystals affected the changes of starch structures and digestibility during microwave heat-moisture treatment. International Journal of Biological Macromolecules. 240:124297. https://doi.org/10.1016/j.ijbiomac.2023.124297 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124297

DUDU, O.E.; OYEDEJI, A.B.; OYEYINKA, S.A.; MA, Y. 2019. Impact of steam-heat-moisture treatment on structural and functional properties of cassava flour and starch. International Journal of Biological Macromolecules. 126:1056-1064. https://doi.org/10.1016/j.ijbiomac.2018.12.210 DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.210

DUYEN, T.T.M.; HUONG, N.T.M.; PHI, N.T.L.; VAN HUNG, P. 2020. Physicochemical properties and in vitro digestibility of mung-bean starches varying amylose contents under citric acid and hydrothermal treatments. International Journal of Biological Macromolecules. 164:651-658. https://doi.org/10.1016/j.ijbiomac.2020.07.187 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.187

FIGUEROA-FLÓREZ, J.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.; CIRO-VELÁSQUEZ, H. 2023a. Hydrothermal processes and simultaneous enzymatic hydrolysis in the production of modified cassava starches with porous-surfaces. Heliyon. 9(7). https://doi.org/10.1016/j.heliyon.2023.e17742 DOI: https://doi.org/10.2139/ssrn.4250746

FIGUEROA-FLÓREZ, J.A.; ARROYO-DAGOBETH, E.D.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.G.; CIRO-VELÁSQUEZ, H.J. 2023b. Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomía Colombiana. 41(1):1-11. https://doi.org/10.15446/agron.colomb.v41n1.105089 DOI: https://doi.org/10.15446/agron.colomb.v41n1.105089

FIGUEROA-FLÓREZ, J.A.; CADENA-CHAMORRO, E.M.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.; CIRO-VELÁSQUEZ, H.J. 2019. Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. DYNA (Colombia). 86(208):162-170. https://doi.org/10.15446/dyna.v86n208.72976 DOI: https://doi.org/10.15446/dyna.v86n208.72976

GUO, L.; LI, J.; GUI, Y.; ZHU, Y.; YU, B.; TAN, C.; FANG, Y.; CUI, B. 2020. Porous starches modified with double enzymes: Structure and adsorption properties. International Journal of Biological Macromolecules. 164:1758-1765. https://doi.org/10.1016/j.ijbiomac.2020.07.323 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.323

GUO, L.; LI, H.; LU, L.; ZOU, F.; TAO, H.; CUI, B. 2019. The role of sequential enzyme treatments on structural and physicochemical properties of cassava starch granules. Starch/Stärke. 71(7-8):1800258. https://doi.org/10.1002/star.201800258 DOI: https://doi.org/10.1002/star.201800258

HAN, Z.; HAN, Y.; WANG, J.; LIU, Z.; BUCKOW, R.; CHENG, J. 2020. Effects of pulsed electric field treatment on the preparation and physicochemical properties of porous corn starch derived from enzymolysis. Journal of Food Processing and Preservation. 44(3):e14353. https://doi.org/10.1111/jfpp.14353 DOI: https://doi.org/10.1111/jfpp.14353

HENNING, F.G.; SCHNITZLER, E.; DEMIATE, I.M.; LACERDA, L.G.; ITO, V.C.; MALUCELLI, L.C.; DA SILVA CARVALHO FILHO, M.A. 2019. Fortified rice starches: The role of hydrothermal treatments in zinc entrapment. Starch – Stärke. 71(1-2):1800130. https://doi.org/10.1002/STAR.201800130 DOI: https://doi.org/10.1002/star.201800130

HONG, J.; AN, D.; ZENG, X.A.; HAN, Z.; ZHENG, X.; CAI, M.; BIAN, K.; AADIL, R.M. 2020. Behaviors of large A-type and small B-type wheat starch granules esterified by conventional and pulsed electric fields assisted methods. International Journal of Biological Macromolecules. 155:516-523. https://doi.org/10.1016/j.ijbiomac.2020.03.184 DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.184

HU, A.; LI, Y.; ZHENG, J. 2019. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. Lwt. 106(29):254-262. https://doi.org/10.1016/j.lwt.2019.02.040 DOI: https://doi.org/10.1016/j.lwt.2019.02.040

KLEIN, B.; PINTO, V Z.; VANIER, N.L.; ZAVAREZE, E.D.R.; COLUSSI, R.; DO EVANGELHO, J.A.; GUTKOSKI, L.C.; DIAS, A.R.G. 2013. Effect of single and dual heat-moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydrate Polymers. 98(2):1578-1584. https://doi.org/10.1016/j.carbpol.2013.07.036 DOI: https://doi.org/10.1016/j.carbpol.2013.07.036

LI, D.; HUANG, Y.; TAO, Y.; XU, E.; ZHANG, R.; HAN, Y. 2020a. Effect of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field. Food Research International. 137:09707. https://doi.org/10.1016/J.FOODRES.2020.109707 DOI: https://doi.org/10.1016/j.foodres.2020.109707

LI, D.; JIANG, L.; HAN, Y.; TAO, Y.; HOU, V.; DENG, J.; LI, M.; YANG, N.; XU, X. 2020b. Method for preparing porous starch by using alternating electric field (China. Patent No. CN110734569B). Nanjing Agricultural University. https://app.patentinspiration.com/#report/89C245B876e7/filter/patents/CN110734569A?inventor=5784482%2C4916522

LI, D.; JIANG, L.; TAO, Y.; YANG, N.; HAN, Y. 2021a. Enhancement of efficient and selective hydrolysis of maize starch via induced electric field. LWT. 143:111190. https://doi.org/10.1016/J.LWT.2021.111190 DOI: https://doi.org/10.1016/j.lwt.2021.111190

LI, D.; TAO, Y.; SHI, Y.; WU, Z.; XU, E.; CUI, B.; HAN, Y. 2021b. Preparation of porous starch by α-amylase-catalyzed hydrolysis under a moderate electric field. Lwt. 137:110449. https://doi.org/10.1016/j.lwt.2020.110449 DOI: https://doi.org/10.1016/j.lwt.2020.110449

LI, D.; WU, Z.; WANG, P.; XU, E.; CUI, B.; HAN, Y.; TAO, Y. 2022. Effect of moderate electric field on glucoamylase-catalyzed hydrolysis of corn starch: Roles of electrophoretic and polarization effects. Food Hydrocolloids. 122:107120. https://doi.org/10.1016/j.foodhyd.2021.107120 DOI: https://doi.org/10.1016/j.foodhyd.2021.107120

LI, Y.; HU, A.; ZHENG, J.; WANG, X. 2019. Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power. International Journal of Biological Macromolecules, 141:76-84. https://doi.org/10.1016/j.ijbiomac.2019.08.218 DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.218

MANIGLIA, B.C.; CASTANHA, N.; ROJAS, M.L.; AUGUSTO, P.E. 2021a. Emerging technologies to enhance starch performance. Current Opinion in Food Science. 37:26-36. https://doi.org/10.1016/j.cofs.2020.09.003 DOI: https://doi.org/10.1016/j.cofs.2020.09.003

MANIGLIA, B.C.; PATARO, G.; FERRARI, G.; AUGUSTO, P.E.D.; LE-BAIL, P.; LE-BAIL, A. 2021b. Pulsed electric fields (PEF) treatment to enhance starch 3D printing application: Effect on structure, properties, and functionality of wheat and cassava starches. Innovative Food Science and Emerging Technologies. 68:102602. https://doi.org/10.1016/j.ifset.2021.102602 DOI: https://doi.org/10.1016/j.ifset.2021.102602

MARTINS, A.; BENINCA, C.; BET, C.D.; BISINELLA, R.Z.B.; DE OLIVEIRA, C.S.; HORNUNG, P.S.; SCHNITZLER, E. 2020. Ultrasonic modification of purple taro starch (Colocasia esculenta B. Tini): structural, psychochemical and thermal properties. Journal of Thermal Analysis and Calorimetry. 142(2):819-828. https://doi.org/10.1007/S10973-020-09298-3 DOI: https://doi.org/10.1007/s10973-020-09298-3

OCHOA-MARTÍNEZ, L.A.; LUNA-SOLÍS, H.A.; BERMÚDEZ-QUIÑONES, G. 2021. Almidón de camote: Modificaciones enzimáticas, físicas y químicas: Una revisión. Tecnociencia Chihuahua. 15(3):221-233. https://doi.org/10.54167/tecnociencia.v15i3.854 DOI: https://doi.org/10.54167/tecnociencia.v15i3.854

OLAYO-CONTRERAS, V.M.; ALEMÁN-CASTILLO, S.J.; RODRÍGUEZ-CASTILLEJOS, G.; CASTILLO-RUIZ, O. 2022. Almidón resistente como prebiótico y sus beneficios en el organismo humano. TIP Revista Especializada en Ciencias Químico-Biológicas. 24:1-7. https://doi.org/10.22201/fesz.23958723e.2021.406 DOI: https://doi.org/10.22201/fesz.23958723e.2021.406

ORJUELA-GARZÓN, W.A.; ARAQUE E.W.A.; CABRERA P.R.A. 2020. Identificación de tecnologías y métodos para la detección temprana del Huanglongbing (HLB) a través de cienciometría en artículos científicos y patentes. Ciencia & Tecnología Agropecuaria. 21(2):1-24. https://doi.org/10.21930/rcta.vol21_num2_art:1208 DOI: https://doi.org/10.21930/rcta.vol21_num2_art:1208

PANG, L.; LU, G.; CHENG, J.; LU, X.; MA, D.; LI, Q.; LI, Z.; ZHENG, J.; ZHANG, C.; PAN, S. 2021. Physiological and biochemical characteristics of sweet potato (Ipomoea batatas (L.) Lam) roots treated by a high voltage alternating electric field during cold storage. Postharvest Biology and Technology. 180:111619. https://doi.org/10.1016/J.POSTHARVBIO.2021.111619 DOI: https://doi.org/10.1016/j.postharvbio.2021.111619

RAHAMAN, A.; KUMARI, A.; ZENG, XIN-AN.; FAROOQ, A.M.; SIDDIQUE, R.; KHALIFA, I.; SIDDEEG, A.; ALI, M.; MANZOOR, M.F. 2021. Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry. 80:105795. https://doi.org/10.1016/j.ultsonch.2021.105795 DOI: https://doi.org/10.1016/j.ultsonch.2021.105795

REN, X.; LIANG, Q.; MA, H.; YANG, X.; CHEN, X.; TANG, J.; LIU Y. 2021. Method for preparing arrowhead resistant starch by ultrasound synergistic pullulanase (China. Patent No. WO2021114694A1). Universidad Jiangsu. https://patents.google.com/patent/WO2021114694A1/en?oq=WO2021114694A1

ROSTAMABADI, H.; ROHIT, T.; KARACA, A.; NOWACKA, M.; COLUSSI, R.; FEKSA S.; AALIYA, B.; VALIYAPEEDIYEKKAL, K.; REZA, S. 2022. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends in Food Science & Technology. 128(1):217-237. https://doi.org/10.1016/j.tifs.2022.08.009 DOI: https://doi.org/10.1016/j.tifs.2022.08.009

SALCEDO-MENDOZA, J.; PATERNINA-URZOLA, S.; LUJAN-RHENALS, D.; FIGUEROA-FLÓREZ, J. 2018. Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA (Colombia). 85(204):223-230. https://doi.org/10.15446/dyna.v85n204.66620 DOI: https://doi.org/10.15446/dyna.v85n204.66620

SOTO, I.L.; LUJAN, R.D.; SALCEDO, J.; TORRES, R. 2018. Evaluation of physical, physico-chemical and sensorial properties of cottage diabolines and diabolines obtained under standard conditions of process. Advance Journal of Food Science and Technology. 16:5965. https://doi.org/10.19026/ajfst.16.5965 DOI: https://doi.org/10.19026/ajfst.16.5965

THOMAZ, L.; ITO, V.C.; MALUCELLI, L.C.; DA SILVA CARVALHO FILHO, M.A.; DEMIATE, I.M.; BET, C.D.; MARINHO, M.T.; SCHNITZLER, E.; LACERDA, L.G. 2020. Effects of dual modification on thermal, structural and pasting properties of taro (Colocasia esculenta L.) starch. Journal of Thermal Analysis and Calorimetry. 139(5):312-3132. https://doi.org/10.1007/S10973-019-08728-1 DOI: https://doi.org/10.1007/s10973-019-08728-1

VELASCO, R.J.; LUNA, W.A.; MERA, J.A.; VILLADA, H.S. 2008. Producción de dextrinas a partir de almidón nativo de yuca por ruta seca en una agroindustria rural. Información Tecnológica. 19(2):15-22. http://dx.doi.org/10.4067/S0718-07642008000200003 DOI: https://doi.org/10.4067/S0718-07642008000200003

VILLARROEL, P.; GÓMEZ, C.; VERA, C.; TORRES, J. 2018. Almidón resistente: características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición. 45:8. https://doi.org/10.4067/s0717-75182018000400271 DOI: https://doi.org/10.4067/s0717-75182018000400271

WANG, D.; HOU, F.; MA, X.; CHEN, W.; YAN, L.; DING, T.; YE, X.; LIU, D. 2020. Study on the mechanism of ultrasound-accelerated enzymatic hydrolysis of starch: Analysis of ultrasound effect on different objects. International Journal of Biological Macromolecules. 148:493-500. https://doi.org/10.1016/j.ijbiomac.2020.01.064 DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.064

WANG, L.; WANG, M.; ZHOU, Y.; WU, Y.; OUYANG, J. 2022. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry. 377:131990. https://doi.org/10.1016/j.foodchem.2021.131990 DOI: https://doi.org/10.1016/j.foodchem.2021.131990

XIE, Y.; LI, M.N.; CHEN, H.Q.; ZHANG, B. 2019. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chemistry. 274:351-359. https://doi.org/10.1016/j.foodchem.2018.09.034 DOI: https://doi.org/10.1016/j.foodchem.2018.09.034

YANG, W.; KONG, X.; ZHENG, Y.; SUN, W.; CHEN, S.; LIU, D.; ZHANG, H.; FANG, H.; TIAN, J.; YE, X. 2019. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrasonics Sonochemistry. 59:104709. https://doi.org/10.1016/J.ULTSONCH.2019.104709 DOI: https://doi.org/10.1016/j.ultsonch.2019.104709

YILMAZ, A.; TUGRUL, N. 2023. Effect of ultrasound-microwave and microwave-ultrasound treatment on physicochemical properties of corn starch. Ultrasonics Sonochemistry. 98:106516. https://doi.org/10.1016/j.ultsonch.2023.106516 DOI: https://doi.org/10.1016/j.ultsonch.2023.106516

YU, B.; LI, J.; TAO, H.; ZHAO, H.; LIU, P.; CUI, B. 2021. Physicochemical properties and in vitro digestibility of hydrothermal treated Chinese yam (Dioscorea opposita Thunb.) starch and flour. International Journal of Biological Macromolecules. 176:177-185. https://doi.org/10.1016/j.ijbiomac.2021.02.064 DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.064

ZHANG, K.; ZHAO, D.; GUO, D.; TONG, X.; ZHANG, Y.; WANG, L. 2021. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. International Journal of Biological Macromolecules. 183:481-489. https://doi.org/10.1016/J.IJBIOMAC.2021.04.180 DOI: https://doi.org/10.1016/j.ijbiomac.2021.04.180

Citado por