Consideraciones clínicas y regulación del equilibrio ácido-base en ganado bovino

Clinical considerations and regulation of acid-base balance in cattle

Contenido principal del artículo

Johann Baquero Parrado

Resumen

El entendimiento de los disturbios electrolíticos y ácido-base depende de la comprensión de los mecanismos fisiológicos que los regulan y de la interpretación de los cambios en el pH sanguíneo. Algunas enfermedades producen un patrón constante de pérdidas de fluidos y electrolitos con cambios predecibles en el volumen y la concentración. Además, uno o más de los componentes que los regulan pueden estar comprometidos, lo cual, puede resultar en desórdenes del estado ácido-base. Actualmente existen tres enfoques para la evaluación clínica del estado ácido-base: la ecuación de Henderson-Hasselbach, el modelo de iones fuertes y el modelo de iones fuertes simplificado, quedando a consideración del clínico su utilización. La manipulación de la diferencia entre cationes y aniones en la dieta (DCAD) es definida como los mili-equivalentes de (Na + K) - (Cl + S) por kilogramo (mEq/kg) de materia seca (MS) y tiene un impacto directo sobre el estado ácido-base, siendo el cloruro de amonio la sal con más poder acidificante y el sulfato de magnesio la sal aniónica más palatable, teniendo en cuenta que el pH urinario es una herramienta útil para evaluar el grado de acidosis metabólica impuesto por las sales aniónicas. Los valores de laboratorio interpretados por cualquier modelo son solo un paso en el análisis electrolítico y ácido-base del paciente. Para tomar decisiones racionales, se deben correlacionar estos valores con el cuadro clínico y el conocimiento de la bioquímica y fisiología subyacente, utilizando los importantes principios de la medicina, basada en la evidencia.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ADAMS, R.; HOLLAND, M.D.; ALDRIDGE, B.; GARRY, F.B.; ODDE, K.G. 1991. Arterial blood sample collection from the newborn calf. Vet Res Commun (Países Bajos). 15(5):387-394.

ASTRUP, P.; JORGENSEN, K.; SIGGAARD ANDERSEN, O.; ENGEL, K. 1960. The acid base metabolism: a new approach. Lancet. 1(7133):1035-1037.

ATKINSON, D.E.; BOURKE, E. 1987. Metabolic aspects of the regulation of systemic pH. Am. J. Physiol. 252:947-956.

BAJCSY, A.; BARTYIK, J.; SZENCI, O. 1999. Comparison of blood ionized calcium and Acid-Base variables in samples from different sampling sites in dairy cows. J. Vet. Med. A (Alemania). 46(4):255-259.

BAQUERO-PARRADO, J.R.; FUENTES-REYES, E.E. 2007. Fluidoterapia en ganado bovino. Revista U.D.C.A. Actualidad & Divulgación Científica (Colombia). 10(2):1-17.

BENJAMIN, M.M. 1991. Hematología: Extracción de sangre. Manual de Patología Clínica en Veterinaria. 3? reimpresión, México, DF, Ed. Limusa, p.9-20.

BIGNER, D.R.; GOFF, J.P.; FAUST, M.A.; TYLER, H.D.; HORST, R.L. 1997. Comparison of oral sodium compounds for the correction of acidosis. J. Dairy Sci. (EEUU). 80(9):2162-2166.

BLEUL, U.; LEJEUNE, B.; SCHWANTAG, S.; KÄHN, W. 2007. Blood gas and acid-base analysis of arterial blood in 57 newborn calves. Vet Rec. (Reino Unido). 161(20):688-691.

BLEUL, U; SCHWANTAG, S; KÄHN, W. 2008. Blood gas analysis of bovine fetal capillary blood during stage II labor. Theriogenology. (EEUU) 69(2):245-251.

BLOCK, E. 1994. Manipulation of dietary cation-anion difference on nutritionally related production diseases, productivity, and metabolic responses of dairy cows. J. Dairy Sci. 77(5):1437-1450.

BUCCI, E.; FRONTICELLI, C.; ORTH, C.; MARTORANA, M.C.; AEBISCHER, L. 1988. Bovine hemoglobin as a basis for artificial oxygen carriers. Biomater Artif Cells Artif Organs (EEUU). 16(1-33):197-204.

CAMBIER, C.; CLERBAUX, T.; MOREAUX, B.; DETRY, B.; BEERENS, D. 2001. Blood oxygen binding in calves with naturally occurring diarrhea. Am. J. Vet. Res. 62(5):799-804.

CAMBIER, C.; CLERBAUX, T.; DETRY, B.; MARVILLE, V.; FRANS, A. 2002. Blood oxygen binding hypoxemic calves. Vet. Res. (Francia). 33(3):283-290.

CARLSON, G.P. 1989. Fluid, Electrolyte, and Acid-Base Balance. En: Kaneko, J.J. ed. Clinical and Biochemistry of Domestic Animals. 4a Ed, San Diego, California, U.S.A., Ed. Academic Press, p.543-575.

CASTAÑEDA, R.; MORENO, C.; OLIVER, O.; DONADO, P. 2002. Acid-base balance in bovine anaplasmosis. En: Memorias: XXII World Buiatrics Congress Hannover, Alemania, agosto 18-23, Abstract 510-299.

CONSTABLE, P.D; SCHMALL, L.M; MUIR III, W.W; HOFFSIS, G.F. 1991. Respiratory, renal, hematologic, and serum biochemical effects of hypertonic saline solution in endotoxemic calves. Am. J. Vet. Res. 52(7):990-998.

CONSTABLE, P.D. 1991. Clinical assessment of renal tubular function through determination of electrolyte and creatinine concentrations. J. Vet. Intern. Med. (EEUU). 5(6):357-358.

CONSTABLE, P.D. 1997. A simplified strong ion model for acid-base equilibria: application to horse plasma. J. Appl. Physiol. 83(1):297-311.

CONSTABLE, P.D.; STREETER, R.N.; KOENING, G.J.; PERKINS, N.R.; GOHAR, H.M. 1997. Determinants and utility of the anion gap in predicting hyperlactatemia in cattle. J. Vet. Intern. Med. 11(2):71-79.

CONSTABLE, P.D. 1999. Clinical assessment of acid-base status: Strong ion difference theory. Vet. Clin. North Am., Food Anim. Pract. 15(3):447-471.

CONSTABLE, P.D. 2000. Clinical assessment of acid-base status: comparison of the Henderson-Hasselbach and strong ion approaches. Vet. Clin. Path. (EEUU). 29(4):124.

CONSTABLE, P.D. 2002. Calculation of variables describing plasma nonvolatile weak acids for use in the strong ion approach to acid-base balance in cattle. Am. J. Vet. Res. 63(4):482-490.

CONSTABLE, P.D. 2003. Fluid and electrolyte therapy in ruminants. Vet. Clin. North Am., Food Anim. Pract. 19(3):557-597.

CONSTABLE, P.D.; STAEMPFLI, H.R. 2004. Using the simplified strong ion approach to determine the mechanism for an acid-base disturbance in calves. En: Memorias: 23rd World Buiatrics Congress, Quebec, Canada, julio 11-16, abstract 026 (3364).

DELAQUIS, A.M.; BLOCK, E. 1995a .The effects of changing ration ingredients on acid-base status, renal function, and macromineral metabolism. J. Dairy Sci. 78(9):2024-2039.

DELAQUIS, A.M.; BLOCK, E. 1995b; Acid-base status, renal function, water, and macromineral metabolism of dry cows fed differing in cation-anion difference. J. Dairy Sci. 78(3):604-619.

DIRKSEN, G.U.; SMITH, M.C. 1987. Acquisition and analysis of bovine rumen fluid. Bovine Pract. (EEUU). 22:108-116.

DUFFIN, J. 2005. The role of acid-base balance in the chemoreflex control of breathing. J. Appl. Physiol. 99(6):2255-2265.

EICKER, S.W. 1990. An Introduction to Strong Ion Difference. Vet. Clin. North Am. Food Anim. Pract. 6(1):45-49.

EWASCHUK, J.B.; NAYLOR, J.M.; ZELLO, G.A. 2003. Anion gap correlates with serum D- and DL-lactate concentration in diarrheic neonatal calves. J. Vet. Intern. Med. 17(6):940-942.

FELDMAN, B.F.; ROSENBERG, D.P. 1981. Clinical use of anion gaps in veterinary medicine. J. Am. Vet. Med. Assoc. 178(4):396-398.

FENCL, V.; JABOR, A.; KaZDE, A.; FIGGE, J. 2000. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am. J. Respir. Crit. Care Med. 162(2):2246-2251.

FIGGE, J.; ROSSING, T.H.; FENCL, V. 1991. The role of serum proteins in acid-base equilibria. J. Lab. Clin. Med. (EEUU). 117(6):453-467.

FLEMING, S.A.; HUNT, E.L.; RIVIERE, J.E.; ANDERSON, K.L. 1991. Renal clearance and fractional excretion of electrolytes over four 6-periods in cattle. Am. J. Vet. Res. 52(1):5-8.

FLEMING, S.A.; HUNT, E.L.; BORWNIE, C.; RAKES, A.; MCDANIEL, B. 1992. Fractional excretion of electrolytes in lactating dairy cows. Am. J. Vet. Res. 53(2):222-224.

FUNK, G.C. 2007. Stewart's acid-base approach. Wien Klinik Wochenschr. (Austria). 119(13-14):390-403.

GABOW, P.A.; KaEHNY, W.D.; FENNESSEY, P.V.; GOODMAN, S.I.; GROSS, P.A. 1980. Diagnostic importance of an increased serum anion gap. New Engl. J. Med. (EEUU). 303(15):854-858.

GABOW, P.A. 1985. Disorders associated with an altered anion gap. Kidney Int. (EEUU). 27(2):472-483.

GALLIVAN, G.J.; MCDONELL, W.N; FORREST, J.B. 1989. Comparative ventilation and gas exchange in the horse and the cow. Res. Vet Sci. (Reino Unido). 46(3):331-336.

GARRET, E.F.; PEREIRA, M.N.; NORDLUND, A.V.; ARMENTANO, L.E.; GOODGER, W.J. 1999. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J. Dairy Sci. 82(6):1170-1178.

GARRY, F.B; HULL, B.L; RINGS, D.M; KERSTING, K; HOFFSIS, G. 1985. Prognostic value of anion gap calculation in cattle with abomasal volvulus: 58 cases (1980-1985). J. Am. Vet. Med. Assoc. 192(8):1107-1112.

GELFERT, C.C.; PASSFELD, M.; LÖPTIEN, A.; MONTAG, N.; BAUMGARTNER, W.; STAUFENBIEL, R. 2006. Experimental studies on the impact of an increased dose of anionic salts on the metabolism of dairy cows. Vet. Q. (Paises Bajos). 28(4):130-139.

GEISHAUSER, T.; MANNHARDT, K. 1994. Methods for the determination of pH value and redox potential in the rumen fluid of adult cattle. Tierärztl. Praxis. (Alemania). 22(5):443-449.

GROUTIDES, C.; MICHELL, A.R. 1990. Evaluation of acid-base disturbances in calf diarrhea. Vet. Rec. 126(2):29-31.

GUSTIN, P.; LOMBA, F.; BAKIMA, M.; LEKEUX, P.; VAN DE MOESTIJNE, K.P. 1987. Partitioning of pulmonary resistance in calves. J. Appl. Physiol. 62(5):1826-1831.

GUSTIN, P.; DETRY, B.; CAO, M.L.; CHENUT, F.; ROBERT, A.; ANSAY, M. 1994. Chloride and inorganic phosphate modulate binding of oxygen to bovine red blood cells. J. Appl. Physiol. 77(1):202-208.

HALPERIN, M.L.; GOLDSTEIN, M.B. 1999. The Clinical Approach to Acid-Base Disorders. Fluid, Electrolyte, and Acid-Base Physiology. 3a Ed, Philadelphia, W.B. Saunders, 52p.

HASSELBALCH, K.A. 1916. Die Berechnung der Wasserstoffzahl des Blutes auf der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem. 78:112-144.

HEJLASZ, Z.; NICPON, J.; RAULUSZKIEWICZ, S., SAMBORSKI, Z. 1987. Buffers systems, electrolytes, pH, and erythrocyte indices in the blood of cows and calves in the perinatal period. Pol. Arch. Weter. (Polonia). 25(2-3):225-235.

HU, W.; MURPHY, M.R.; CONSTABLE, P.D.; BLOCK, E. 2007. Dietary cation-anion difference effects on performance and acid-base status of dairy cows postpartum. J. Dairy Sci. 90(7):3367-3375.

KaSARI, T.R.; NAYLOR, J.M. 1986. Further studies on the clinical features and clinicopathological findings of a síndrome of metabolic acidosis with minimal dehydration in neonatal calves. Can. J. Vet. Res. 50(4):502-508.

KaSARI, T.R. 1999. Metabolic acidosis in calves. Vet. Clin. North Am., Food Anim. Pract. 15(3):472-486.

KRAUT, J.A.; MADIAS, N.E. 2007. Serum anion gap: its uses and limitations in clinical medicine. Clin. J. Am. Soc. Nephrol. 2(1):162-174.

LEBEDA, M. 1984. Concentration of ammonia in the urine of dairy cows given green feed rations and winter feed rations. Vet. Med. (Praha) (República Checa). 29(7):387-400.

LISBÔA, J.A.N.; BENESI, F.J.; LEAL, M.L.R.; TEIXEIRA, C.M.C. 2003. Efeito do tempo após a ingestão de leite sobre o equilíbrio ácido-básico de bezerros. Arqu. Bras. Med. Vet. e Zoot. 55(6): 763-765.

LORENZ, I. 2004. Investigations on the influence of serum D-lactate levels on clinical signs in calves with metabolic acidosis. Vet. J. 168(3):323-327.

LORENZ, I.; VOGT, S. 2006. Investigations on the association of d-lactate blood concentrations with the outcome of therapy of acidosis, and with posture and demeanors in young calves with diarrhea. J. Vet. Med. A. 53(9):490-494.

LUNN, D.P.; MCGUIRK, S.M. 1990. Renal regulation and acid-base balance in ruminants. Vet. Clin. North Am., Food Anim. Pract. 6(1):1-28.

MICHELL, A.R.; BYWATER, R.J.; CLARKE, A.W.; HALL, L.W.; WATERMAN, A.E. 1991. Regulación de los fluidos corporales. Fluidoterapia Veterinaria. 1a Ed, Edit. Acribia, Zaragoza, ESPAÑA. p.1-21.

NAPPERT, G.; NAYLOR, J.M. 2001. A comparison of pH determination methods in food animal practice. Can. Vet. J. 42(5):364-367.

NAYLOR, J.M. 1987. Evaluation of the total carbon dioxide apparatus and pH meter for the determination of Acid-Base status in diarrheic and healthy calves. Can. Vet. J. 28(1-2):45-48.

NEIGER, R.D.; HAGEMOSER, W.A. 1985. Renal percent clearance ratios in cattle. Vet. Clin. Pathol. (EEUU). 14(1):31-35.

OETZEL, G.R.; OLSON, J.D.; CURTIS, C.R.; FETTMANN, M.J. 1988. Ammonium chloride and ammonium sulfate for prevention of parturient paresis in dairy cows. J. Dairy Sci. 71(12):3302-3309.

OETZEL, G.R.; FETTMANN, M.J.; HAMAR, D.W.; OLSON, J.D. 1991. Screening of anionic salts for palatabillity, effects on acid-base status, and urinary calcium excretion in dairy cows. J. Dairy Sci. 74(3):965-971.

OETZEL, G.R. 2000. Management of dry cows for the prevention of milk fever and other mineral disorders. Vet. Clin. North Am., Food Anim. Pract. 16(2):369-386.

OETZEL, G.R. 2004. Monitoring and testing dairy herds for metabolic disease. Vet. Clin. North Am., Food Anim. Pract. 20(3):651-674.

OLIVER, O.E. 1998. Balance Hídrico, Electrolítico y Acido-Base: Implicaciones terapéuticas. En: Memorias Equilibrio Hídrico-electrolítico y Acido-Base en Medicina Veterinaria. Santa Fe de Bogotá D.C, Facultad de Medicina Veterinaria, U.N. Colombia, Abril 24 y 25, p.42.

QUINTARD, H.; HUBERT, S.; ICHAI, C. 2007. What is the contribution of Stewart's concept in acid-base disorders analysis? Ann. Franç. d'Anesthésie et de Réanimation (Francia). 26(5):423-433.

RADOSTITIS, O. 2002. Exploración clínica del aparato digestivo. En Radostitis, O.M; Mayhew, I.G.J., Houston, D.M. eds. Examen y Diagnóstico Clínico en Veterinaria. 1a ed, Ed. Harcourt, España. p.349-468.

RAMÍREZ, G.; BITTLE, P.A.; COLICE, GL.; SANTACRUZ, R.; HIDALGO, A. 1992. Blood biochemical characteristics of cattle at sea level and moderately high altitude (3.000m). Am. J. Vet. Res. 53(4):54-550.

REHM, M.; CONZEN, P.F.; PETER, K.; FINSTERER, U. 2004. The Stewart model. "Modern" approach to the interpretation of the acid-base metabolism. Anaesthesist (Alemania). 53(4):347-357.

ROEDER, B.L.; CLARK, F.D. 1995. Determination of serum ionized calcium concentration in dairy cattle after frozen anaerobic storage. Vet. Clin. Pathol. 24(2):44-48.

ROLLIN, F.; DESMECHT, D.; GENICOT, B.; LINDEN, A.; LOMBA, A. 1997. Ventilatory effects of the single-breath CO2 test, compared with eructation, in cattle. Am J Vet Res. 58(3):310-316.

ROUSSEL, A.J.; WHITNEY, M.S.; COLE, D.J. 1997. Interpreting a bovine serum chemistry profile: Part 2. Vet Med. 92(6):559-566.

SÁNCHEZ, W.; BLOCK, U. 2000. Update on DCAD: Milking and transition cows. Proc. Calif. Anim. Nutr. Conf. Fresno. CA. p.106-125.

SATTLER, N.; FECTEAU, G.; COUTURE, Y.; TREMBLAY, A. 2001. Determination of the potassium balances in dairy cows and the examination of daily and lactation period-associated variations. Can. Vet. J. 42(2):107-115.

SEIFI, H.A.; MOHRI, M.; KaLAMATI-ZADEH, J. 2004. Use of pre-partum urine pH to predict the risk of milk fever in dairy cows. Vet. J. (Reino Unido). 167(3):281-285.

SETIA, M.S.; SINGH, A.; KaHLON, R.S.; RANDHAWA, S.S. 1996. Alterations in the systemic acid-base status and blood gas dynamics during progressive hypocalcaemia in cow calves. Indian J. Exp. Biol. 34(4):375-376.

SHERLOCK, M.; HEALY, A.M.; DOHERTY, M.L. 2003. Acid-base balance in field cases of bovine babesiosis. Vet. Rec. 152:687-688.

SIMPSON, D.F.; ERB, H.N.; SMITH, D.F. 1985. Base excess as a prognostic and diagnostic indicator in cows with abomasal volvulus or right displacement of the abomasum. Am. J. Vet. Res. 46(4):796-797.

SINGH, A.; RANDHAWA, S.S.; SETIA, M.S. 1989. Alterations in acid-base status and blood gas dynamics during progressive hyperKalemia in neonatal calves. Res. Vet. Sci. 46(2):277-279.

STAEMPFLI, H.R.; PETRIE, J.P.; LUMSDEN, J.H. 1994. The weak acid concentration of plasma in Holstein calves. En: Proceedings VI Congress International Society for Animal Clinical Biochem. p.76.

STAEMPFLI, H.R. 2005. Role of electrolytes in acid-base balance: theory and practicality. Proceedings of the ACVIM (American College Veterinary Internal Medicine) Forum Baltimore. Electronic Proceedings.

STEWART, P.A. 1983. Modern quantitative acid-base chemistry. Can. J. Physiol. Pharmacol. 61(12):1444-1461.

STOCKER, H.; LUTZ, H.; KaUFMANN, C.; RÜSCH, P. 1999. Acid-base disorders in milk-fed calves with chronic indigestion. Vet. Rec. 145(12):340-346.

STOCKHMAN, S.L., SCOTT, M.A. 2002. Blood gases, blood pH, and strong ion difference. Veterinary Clinical Pathology. 1a ed. Blackwell Publishing. Iowa, U.S.A. p.381-400.

SZENCI, O.; NYIRO, K. 1981. Assessment of the parameters controlling the acid-base status of newborn calves. A modification of Van Slyke?s equation. Acta Vet. Acad. Sci. Hung. 29(2):153-157.

SZENCI, O.; KUTAS, F.; HARASZTI, J. 1982. Influence of induced maternal acidosis on the acid-base balance of the newborn calf. Acta Vet. Acad. Sci. Hung. 30(1-3):71-77.

SZENCI, O. 1982. Correlations between muscle tone and acid-base balance in newborn calves: experimental substantiation of a simple new score system proposed foe neonatal status diagnosis. Acta Vet. Acad. Sci. Hung. 30(1-3):80.

SZENCI, O.; GÀLFI, P.; LAJCSÀK, A. 1984. Comparison of Carbonic Anhydrase In Neonatal and Maternal Red Blood Cells with different Levels of Acidosis in Newborn Calves. J. Vet. Med. A. 31(6):437-440.

SZENCI, O. 1985. Role of acid-base disturbances in perinatal mortality of calves. Acta Vet. Acad. Sci. Hung. 33(3-4):205-220.

SZENCI, O.; BRYDL, E.; BAJCSY, C.A. 1991. Effect of storage on measurement of ionized calcium and acid-base variables in equine, bovine, ovine, and canine venous blood. J. Am. Vet. Med. Assoc. 199(9):1167-1169.

SZENCI, O.; CHEW, BP.; BAJCSY, C.A.; SZABO, P.; BRYDL, E. 1994. Total and ionized calcium in parturient dairy cows and their calves. J. Dairy Sci. 77(4):1100-1105.

TUCKER, W.B.; HARRISON, G.A.; HEMKEN, R.W. 1988. Influence of dietary cation-anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. J. Dairy Sci. 71(2):346-354.

TYLER, H.; RAMSEY, H. 1991. Hipoxia in neonatal calves: effects on selected metabolic parameters. J. Dairy Sci. 74(6):1957-1962.

ULUTAS, B.; SAHAL, M. 2005. Urinary GGT/creatinine ratio and fractional excretion of electrolytes in diarrhoeic calves. Acta Vet. Acad. Sci. Hung. 53(3):351-359.

UYSTEPRUYST, C.; COGUE, J.; DORTS, T.; HARMEGNIES, N.; DELSEMME, M. 2002. Sternal recumbency or suspension by the hind legs immediately after delivery improves respiratory and metabolic adaptation to extrauterine life in newborn calves delivered by cesarean section. Vet. Res. 33(6):709-724.

VAGNONI, D.B.; OETZEL, G.R. 1998. Effects of Dietary Cation-Anion Difference on the Acid-Base Status of Dry Cows. J. Dairy Sci. 81(6):1643-1652.

VAN MOSEL, M.; VAN`T KLOOSTER, A.T.; VAN MOSEL, F.; VAN DER KUILEN, J. 1993. Effects of reducing dietary ([Na+ + K+] - [Cl- + SO4=]) on the rate of calcium mobilization by dairy cows at parturition. Res Vet Sci. 54(1):1-9.

VAN MOSEL, M.; WOUTERSE, H.S.; VAN`T KLOOSTER, A.T. 1994. Effects of reducing dietary ([Na+ + K+] - [Cl- + SO4=]) on bone in dairy cows at parturition. Res. Vet Sci. 56(3):270-276.

VIAMONTE, M.I.; FAJARDO, L.C.; RONDON, G. 1992. Estado ácido-básico en hembras bovinas lecheras con diferentes estados reproductivos. Rev. Cubana Cienc. Vet. 23(2-3):113-115.

WEST, J.W. 2003. Effects oh Heat-Stress on Production in Dairy cattle. J. Dairy Sci. 86(3):2131-2144.

WHITEHAIR, K.J.; HASKINS, S.C.; WHITEHAIR, J.G.; PASCOE, P.J. 1995. Clinical applications of quantitative acid-base chemistry. J. Vet. Intern. Med. 9(1):1-11.

WILKES, P. 1998. Hypoproteinemia, strong-ion difference, and acid-base status in critically ill patients. J. Appl. Physiol. 84(5):1740-1748.

WILSON, G.D.; HUNTER, J.T.; DERRICK, G.H.; AITKEN, W.M.; KRONFELD, D.S. 1977. Fetal and maternal plasma electrolytes, blood gases, and pH in dairy cattle during late pregnancy. J. Dairy Sci. 60(6):1110-1116.

WILDMAN, C.D.; WEST, J.W.; BERNARD, K. 2007. Effects of Dietary Cation-Anion Difference and Potassium to Sodium Ratio on Lactating Dairy Cows in Hot Weather. J. Dairy Sci. 90(2):970-977.

WINTER, S.D.; PEARSON, J.R.; GABOW, P.A.; SCHULTZ, A.L.; LEPOFF, R.B. 1990. The fall of the serum anion gap. Arch. Intern. Med. (EEUU). 150(2):311-313.

Citado por