Control de Aedes (Stegomyia) aegypti utilizando Bacillus thuringiensis var. israelensis en Armenia, Quindío, Colombia

Contenido principal del artículo

Autores

Oscar Alexander Aguirre Obando http://orcid.org/0000-0003-2480-7004
Irene Duarte Gandica http://orcid.org/0000-0003-2885-3374

Resumen

En Colombia, Aedes aegypti es resistente a la mayoría de insecticidas utilizados. Debido al lento desarrollo de resistencia a Bacillus thuringiensis var. israelensis (Bti), así como su alta especificidad e inocuidad ambiental, el uso de este larvicida, se torna una alternativa en el manejo de este vector. En este trabajo, se evaluó experimentalmente y describió por medio de un modelo matemático, la dinámica del control de poblaciones naturales de A. aegypti, utilizando Bti. Se determinó el perfil de susceptibilidad, a través de bioensayos dosis-respuesta con larvas colectadas de Armenia (Quindío, Colombia). Adicionalmente, con los datos de mortalidad de las localidades analizadas, un nuevo análisis fue realizado, para estimar el perfil de susceptibilidad del municipio de Armenia. Los datos de mortalidad fueron utilizados para calcular las concentraciones letales 50 y 95. Con éstas, se realizaron simulaciones hipotéticas del comportamiento del vector, obtenidas a partir de un modelo matemático, que describe la dinámica poblacional, usando aplicaciones sucesivas de Bti y diferentes intervalos de tiempo. Los bioensayos dosis-respuesta indican que las poblaciones del vector analizadas son susceptibles al Bti, por presentar una respuesta biológica similar a la obtenida en la cepa de referencia Rockefeller. Las simulaciones aplicando un control periódico sostenido, sugieren que el Bti es efectivo para controlar el vector; sin embargo, su eficiencia a largo plazo depende de la relación entre concentración letal y frecuencia de aplicación. Se concluye que la aplicación sostenida de Bti constituye una alternativa viable para el control de poblaciones de A. aegypti, a largo plazo.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. AGUILAR-MEZA, O.; RAMÍREZ-SUERO, M.; BERNAL, J.; RAMÍREZ-LEPE, M. 2010. Field evaluation against Aedes aegypti larvae of aluminum-carboxymethylcellulose-encapsulated spore-toxin complex formulation of Bacillus thuringiensis Serovar israelensis. J. Econ. Entomol. (USA). 103(3):570-576. http://dx.doi.org/10.1603/EC09372

2. AGUIRRE-OBANDO, O.; DALLA BONNA, A.; DUQUE LUNA, J.; NAVARRO-SILVA, M. 2015. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia (Brasil). 32(1):14-22. http://dx.doi.org/10.1590/S1984-46702015000100003

3. APONTE, A.; PENILLA, R.; RODRÍGUEZ, A.; OCAMPO, C. 2019. Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Act. Trop. 191:146-154. https://doi.org/10.1016/j.actatropica.2018.12.021

4. ARAÚJO, A.; MELO-SANTOS, M.; OLIVEIRA, C.; MARANHÃO, E.; REGIS, L. 2007. Evaluation of an experimental product based on Bacillus thuringiensis serovar. israelensis against Aedes aegypti larvae (Diptera: Culicidae). Biol. Control. 41(3):339-347. https://doi.org/10.1016/j.biocontrol.2007.03.002

5. ARMENGOL, G.; HERNANDEZ, J.; VELEZ, J.; ORDUZ, S. 2006. Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. J. Econ. Entomol. 99(5):1590-1595. http://dx.doi.org/10.1603/0022-0493-99.5.1590

6. BALDACCHINO, F.; CAPUTO, B.; CHANDRE, F.; DRAGO, A.; DELLA TORRE, A.; MONTARSI, F.; RIZZOLI, A. 2015. Control methods against invasive Aedes mosquitoes in Europe: a review. Pest. Manag. Sci. 71(11):1-38. https://doi.org/10.1002/ps.04044

7. BAR-ZEEV, M. 1958. The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L.). Bull. Entomol. Res. 49(1):157-163.

8. BARDACH, A.; GARCÍA‐PERDOMO, H.; ALCARAZ, A.; TAPIA, E.; GÁNDARA, R.; RUVINSKY, S.; CIAPPONI, A. 2019. Interventions for the control of Aedes aegypti in Latin America and the Caribbean: systematic review and meta‐analysis. Trop. Med. Inter. Health. 24(5):530-552. https://doi.org/10.1111/tmi.13217

9. BECKER, N.; LUDWIG, M.; SU, T. 2018. Lack of resistance in Aedes vexans field populations after 36 years of Bacillus thuringiensis subsp. israelensis applications in the Upper Rhine Valley, Germany. J. AM. Contr. Assoc. 34(2):154-157. https://doi.org/10.2987/17-6694.1

10. BOUDJELIDA, H.; AISSAOUI, L.; BOUAZIZ, A.; SMAGGHE, G.; SOLTANI, N. 2007. Laboratory evaluation of Bacillus thuringiensis (Vectobac WDG) against mosquito larvae, Culex pipiens and Culiseta longiareolata. Comm. Appl. Biol. Sci. 73(3):603-609.

11. BOYCE, R.; LENHART, A.; KROEGER, A.; VELAYUDHAN, R.; ROBERTS, B.; HORSTICK, O. 2013. Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review. Trop. Med. Int. Health. 18(5):564–577. https://doi.org/10.1111/tmi.12087

12. BRAVO, A.; GÓMEZ, I.; PORTA, H.; GARCÍA-GÓMEZ, B.; RODRIGUEZ-ALMAZAN, C.; PARDO, L.; SOBERÓN, M. 2013. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 6(1):17-26. https://doi.org/10.1111/j.1751-7915.2012.00342.x

13. BURDEN, R.; FAIRES, J. 2005. Análisis numérico. Séptima edición, Thomson Learning: México. p.249-342.

14. CADAVID-RESTREPO, G.; SAHAZA, J.; ORDUZ, S. 2012. Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance. Mem. Inst. Oswaldo Cruz. 107(1):74-79. https://doi.org/10.1590/S0074-02762012000100010

15. CARVALHO, S.A.; DA SILVA, S.O.; DA CUNHA CHARRET, I. 2019. Mathematical modeling of dengue epidemic: control methods and vaccination strategies. Theor. Biosci. 138(2):223-239. https://doi.org/10.1007/s12064-019-00273-7

16. DA SILVA, K.; CRESPO, M.; ARAÚJO, A.; SILVA, R.; MELO-SANTOS, M.; OLIVEIRA, C.; SILVA-FILHA, M. 2018. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasites & Vectors. 11(1):673. https://doi.org/10.1186/s13071-018-3246-1

17. DUQUE, L.; JONNY, E.; NAVARRO-SILVA, M. 2006. Dynamics of the control of Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) by Bacillus thuringiensis var israelensis, related with temperature, density and concentration of insecticide. Rev. Bras. Entomol. 50(4):528-533. http://dx.doi.org/10.1590/S0085-56262006000400014

18. EDELSTEIN-KESHET, L. 1988. Mathematical models in biology. Random House: New York. p.72-110.

19. ELLEUCH, J.; JAOUA, S.; DARRIET, F.; CHANDRE, F.; TOUNSI, S.; ZGHAL, R. 2015. Cry4Ba and Cyt1Aa proteins from Bacillus thuringiensis israelensis: Interactions and Toxicity mechanism against Aedes aegypti. Toxicon. 104:83-90. http://dx.doi.org/10.1016/j.toxicon.2015.07.337

20. FINNEY, D. 1971. Probit analysis. 3rd edition, Cambridge: University Press. 333p.

21. FORATTINI, O.P. 2002. Culicidología Medica, vol. 2. Identificación, Biología, Epidemiología. Ed. Universidad de Sao Paulo Brasil, 860p.

22. GÓMEZ-VARGAS, W.; VALENCIA-JIMÉNEZ, K.; CORREA-LONDOÑO, G.; JARAMILLO-YEPES, F. 2018. Novel larvicide tablets of Bacillus thuringiensis var. israelensis: Assessment of larvicidal effect on Aedes aegypti (Diptera: Culicidae) in Colombia. Biomedica. 38:95-105. https://doi.org/10.7705/biomedica.v38i0.3940

23. GRISALES, N.; POUPARDIN, R.; GOMEZ, S.; FONSECA-GONZALEZ, I.; RANSON, H.; LENHART, A. 2013. Temephos resistance in Aedes aegypti in Colombia compromisos dengue vector control. PLoS. Negl. Trop. Dis.7(9):1-10. https://doi.org/10.1371/journal.pntd.0002438

24. INSECTICIDE RESISTANCE ACTION COMMITTEE - IRAC. 2019. IRAC Mode of Action Classification Scheme. Insecticide Resistance Action Committee (IRAC): USA. p.1-30.

25. JAHAN, N.; SHAHID, A. 2012. Evaluation of resistance against Bacillus thuringiensis israelensis WDG in dengue vector from Lahore, Pakistan. Pak. J. Zool. 44(4):945-949.

26. KROEGER, A.; DEHLINGER, U.; BURKHARDT, G.; ATEHORTUA, W.; ANAYA, H.; BECKER, N. 1995. Community based dengue control in Colombia: peoples knowledge and practice and the potential contribution of the biological larvicide Bti (Bacillus thuringiensis israelensis). Trop. Med. Parasitol. 46(4):241-246.

27. LACEY, L. 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J. Am. Mosq. Control Assoc. 23:133-163. http://dx.doi.org/10.2987/8756-971X(2007)23[133:BTSIAB]2.0.CO;2

28. LAND, M.; BUNDSCHUH, M.; HOPKINS, R.; POULIN, B.; MCKIE, B. 2019. What are the effects of control of mosquitoes and other nematoceran Diptera using the microbial agent Bacillus thuringiensis israelensis (Bti) on aquatic and terrestrial ecosystems? A systematic review protocol. Enviro. Evidence. 8(1):32. https://doi.org/10.1186/s13750-019-0175-1

29. LI, C.; LIM, T.; HAN, L.; FANG, R. 1985. Rainfall, abundante of Aedes aegypti and dengue infection in Selengar, Malaysia. Southeast Asian J. Trop. Med. Public Health. 16(4):560-568.

30. MANRIQUE, P.; GONZÁLEZ, H.; PARRA, V.; IBÁÑEZ, S. 1998. Desarrollo, mortalidad y sobrevivencia de las etapas inmaduras de Aedes aegypti (Diptera: Culicidae) en neumático. Biomédica. 9:84-91.

31. MATHWORKS. 2012. MATLAB and Statistics Toolbox Release. The MathWorks, Inc. Massachusetts: USA.

32. MCAULEY, M.; CHOI, H.; MOONEY, K.; PAUL, E.; MILLER, V. 2015. systems biology and synthetic biology: a new epoch for toxicology Research. Advances in Toxicology. 2015:1-14. http://dx.doi.org/10.1155/2015/575403

33. MEREDITH, H.; FURUYA-KANAMORI, L.; YAKOB, L. 2019. Optimizing systemic insecticide use to improve malaria control. bioRxiv. 3:621391. http://dx.doi.org/10.1101/621391

34. MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL - MINSALUD; INSTITUTO NACIONAL DE SALUD - INS; ORGANIZACIÓN PANAMERICANA DE LA SALUD - OPS. 2011. Guía de Vigilancia Entomológica y Control de Dengue. Disponible desde Internet en: http://new.paho.org/col/index.php?option=com_docman&task=doc_download&gid=1215&Itemid=

35. MOMO, F.; CAPURRO, E. 2006. Ecología matemática: principios y aplicaciones. Ediciones Cooperativas. Argentina. p.11-16.

36. OCAMPO, C.; GONZÁLEZ, C.; MORALES, C.A.; PÉREZ, M.; WESSON, D.; APPERSON, C. 2009. Evaluation of community-based strategies for Aedes aegypti control inside houses. Biomedica. 29:282-297.

37. PAZ, O.; LEÓN, M.; GONZÁLEZ, J.; VARGAS, F.; REYES, S. 2019. Inclusión comunitaria y aplicación de Bacillus thuringiensis h-14, variedad israelensis, en ecosistemas urbanos de Aedes aegypti. un modelo de intervención contra el dengue en Florencia de Mora. PUEBLO CONTINENTE. 30(2):441-449. http://doi.org/10.22497/PuebloCont.302.12

38. RAYMOND, M. 1993. PROBIT software. CNRS UMII: France.

39. REBÊLO, J.; COSTA, J.; SILVA, F.; PEREIRA, Y.; SILVA, J. 1999. Distribution of Aedes aegypti and dengue in the State of Maranhão, Brazil. Cad. Saude Publica. 15(3):477-486.

40. SAÚDE, M.D. 2006. Reunião técnica para discutir status de resistência de Aedes aegyptia inseticidas. Brasilia: Ministério da Saúde.

41. SMITH, L.; KASAI, S.; SCOTT, J. 2016. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic. Biochem. Physiol. 133:1-12. http://dx.doi.org/10.1016/j.pestbp.2016.03.005

42. SOARES-DA-SILVA, J.; PINHEIRO, V.; LITAIFF-ABREU, E.; POLANCZYK, R.; TADEI, W. P. 2015. Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. 59:01-06. http://dx.doi.org/10.1016/j.rbe.2015.02.001

43. SOUZA-NETO, J.; POWELL, J.; BONIZZONI, M. 2019. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 67:191-209. https://doi.org/10.1016/j.meegid.2018.11.009

44. VACHON, V.; LAPRADE, R.; SCHWARTZ, J. 2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J. Invertebr. Pathol. 111(1):1-12. https://doi.org/10.1016/j.jip.2012.05.001

45. WORLD HEALTH ORGANIZATION - WHO. 1981. Instructions for determining susceptibility or resistance of mosquito larvae to insecticides: WHO/VBC-81. p.1-6.

46. WORLD HEALTH ORGANIZATION - WHO. 2013. Sustaining the drive to overcome the global impact of neglected tropical diseases. Disponible desde Internet en: http://apps.who.int/iris/bitstream/10665/77950/1/9789241564540_eng.pdf

47. ZHAO, G.-H.; LIU, J.-N.; HU, X.-H.; BATOOL, K.; JIN, L.; WU, C.-X.; YANG, Z.-H. 2019. Cloning, expression and activity of ATP-binding protein in Bacillus thuringiens is toxicity modulation against Aedes aegypti. Parasite. Vector. 12(1):319. https://doi.org/10.1186/s13071-019-3560-2

Descargas

La descarga de datos todavía no está disponible.