Hipercetonemia: bioquímica de la producción de ácidos grasos volátiles y su metabolismo hepático

Hyperketonemia: Biochemistry of volatile fatty acid production and its hepatic metabolism

Contenido principal del artículo

Oscar Felípe Huertas-Molina

Resumen

La hipercetonemia o cetosis bovina es un desorden metabólico, que se caracteriza por el incremento patológico de cuerpos cetónicos (beta-hidroxibutirato (βHB), Acetoacetato (AcAc) y acetona) y ocurre en el periparto de vacas de leche. El origen primario de la enfermedad es el balance energético negativo (BEN), que puede ser desencadenado por el incremento excesivo de los requerimientos energéticos o la presentación de enfermedades posparto, resultando en la presentación de signos clínicos o disminución de la producción de leche. El objetivo de esta revisión consiste en describir, mediante un modelo, los procesos bioquímicos del rumen y los mecanismos fisiopatológicos, involucrados con incremento excesivo de los cuerpos cetónicos. En resumen, se realizó un modelo fisiológico uniendo literatura fragmentada, sobre la relación entre la función ruminal, hepática y la inducción de lipolisis e incremento de la actividad de Carnitil-Palmitoil transferasa-1 (CPT-1), cuyo resultado puede ser la producción excesiva de Acetil-CoA que, junto con la falta de propionato y oxalacetato (precursores de gluconeogénesis y ciclo de Krebs), dan lugar a la producción patológica de acetoacetato y beta-hidroxibutirato.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ALUWONG, T.; KOBO, P.I.; ABDULLAHI, A. 2010. Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: a review. African Journal of Biotechnology. 9(38):6229-6232.

ANTANAITIS, R.; JUOZAITIEN, V.; TELEVI, M.; MALAŠAUSKIEN, D. 2018. Changes in the real-time registration of milk β -hydroxybutyrate according to stage and lactation number, milk yield, and status of reproduction in dairy cows. Polish J. Veterinary Sciences (Polonia). 21(4):763-768. https://doi.org/10.24425/pjvs.2018.125589

ASCHENBACH, J.R.; KRISTENSEN, N.B.; DONKIN, S.S.; HAMMON, H.M.; PENNER, G.B. 2010. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life (Estados Unidos). 62(12):869-877. https://doi.org/10.1002/iub.400

BALDWIN, R.L. 1998. Use of isolated ruminal epithelial cells in the study of rumen metabolism. The Journal of Nutrition (Inglaterra), 128:293S-296S. https://doi.org/10.1093/jn/128.2.293s

BALDWIN, R.L.; CONNOR, E.E. 2017. Rumen function and development. Veterinary Clinics of North America - Food Animal Practice (Norte América). 33(3):427-439. https://doi.org/10.1016/j.cvfa.2017.06.001

BALDWIN, R.L.; JESSE, B.W. 1991. Technical note: isolation and characterization of sheep ruminal epithelial cells. J. Animal Science (Inglaterra), 69(9):3603-3609. https://doi.org/10.2527/1991.6993603x

BALDWIN, R.L.; JESSE, B.W. 1996. Propionate modulation of ruminal ketogenesis. J. Animal Science. 74(7):1694-1700. https://doi.org/10.2527/1996.7471694x

BRUSS, M.L. 2008. Lipids and ketones. En: Kaneko, J.; Harvey, J.; Bruss, M.L. (eds). Clinical Biochemistry of Domestic Animals. Ed. ElSEVIER (Estados unidos). p.81–115. https://doi.org/10.1016/B978-0-12-370491-7.00004-0

CHANDLER, T.L.; PRALLE, R.S.; DÓREA, J.R.R.; POOCK, S.E.; OETZEL, G.R.; FOURDRAINE, R.H.; WHITE, H.M. 2017. Predicting hyperketonemia by logistic and linear regression using test-day milk and performance variables in early-lactation holstein and jersey cows. J. Dairy Science (Estados Unidos). 101(3):2476-2491. https://doi.org/10.3168/jds.2017-13209

CHURCH, D.C. 1993. El rumiante: Fisiología Digestiva Y Nutrición. Ed. Acribia S.A (España). 652p.

DIJKSTRA, J.; ELLIS, J.L.; KEBREAB, E.; STRATHE, A.B.; LÓPEZ, S.; FRANCE, J.; BANNINK, A. 2012. Ruminal ph regulation and nutritional consequences of low pH. Animal Feed Science and Technology (Estados Unidos). 172(1-2):22-33. https://doi.org/10.1016/j.anifeedsci.2011.12.005

DUFFIELD, T.F.; LISSEMORE, K.D.; MCBRIDE, B.W.; LESLIE, K.E. 2009. Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science (Estados Unidos). 92(2):571-580. https://doi.org/10.3168/jds.2008-1507

EMMANUEL, B. 1980. Oxidation of butyrate to ketone bodies and CO2 in the rumen epithelium, liver, kidney, heart and lung of camel (camelus dromedarius), sheep (ovis aries) and goat (carpa hircus). Comparative Biochemistry and Physiology -- Part B: Biochemistry and molecular biology (Holanda), 65(4):699-704. https://doi.org/10.1016/0305-0491(80)90182-0

EMMANUEL, B. 1981. Further metabolic studies in the rumen epithelium of camel (camelus dromedarius) and sheep (ovis aries). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 68(1):155-158. https://doi.org/10.1016/0305-0491(81)90196-6

EMMANUEL, B.; MILLIGAN, L.P. 1983. Butyrate: acetoacetyl-coa transferase activity in bovine rumen epithelium. Canadian J. Animal Science. 63(1):355-360. https://doi.org/10.4141/cjas83-043

ENGELKING, L.R. 2015. Textbook of veterinary physiological chemistry. Ed. Elsevier (Estados Unidos). 786p.

FRANKLUNDT, C.V.; GLASS, T.L. 1987. Glucose uptake by the cellulolytic ruminal anaerobe bacteroides succinogenes. J. Bacteriology (Estados Unidos). 169(2):500-506.

FRIGGENS, N.C.; BERG, P.; THEILGAARD, P.; KORSGAARD, I.R.; INGVARTSEN, K.L; LØVENDAHL, P.; JENSEN, J. 2007. Breed and parity effects on energy balance profiles through lactation: evidence of genetically driven body energy change. J. Dairy Science (Estados Unidos). 90(11):5291-5305. https://doi.org/10.3168/jds.2007-0173

GARZÓN-AUDOR, A.M.; OLIVER-ESPINOSA, O.J. 2018. Incidencia y prevalencia de cetosis clínica y subclínica en ganado en pastoreo en el altiplano cundiboyacense, Colombia. CES Medicina Veterinaria Y Zootecnia (Colombia). 13(2):121-136. https://doi.org/10.21615/cesmvz.13.2.3

HACKMANN, T.J.; FIRKINS, J.L. 2015. Electron transport phosphorylation in rumen butyrivibrios: unprecedented atp yield for glucose fermentation to butyrate. Frontiers in Microbiology (Estados Unidos). 6(1):1-11. https://doi.org/10.3389/fmicb.2015.00622

HACKMANN, T.J.; NGUGI, D.K.; FIRKINS, J.L.; TAO, J. 2017. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short- chain fatty acids Tim. Environmental Microbiology (Estados Unidos), 19(11):4670-4683. https://doi.org/10.1111/1462-2920.13929

HARFOOT, C.G. 1981. Lipid metabolism in the rumen. En: Lipid metabolism in ruminant animals. Pergamon. p. 21-55.

HEITMANN, R.N.; DAWES, D.J.; SENSENIG, S.C. 1987. Hepatic ketogenesis and peripheral ketone body utilization in the ruminant. The Journal of Nutrition (Inglaterra). 117(6):1174-1180. https://doi.org/10.1093/jn/117.6.1174

HERDT, T.H. 2000. Ruminant adaptation to negative energy balance. Veterinary Clinics of North America: Food Animal Practice (Estados Unidos). 16(2):215–230. https://doi.org/10.1016/s0749-0720(15)30102-x

JIANG, W.; PINDER, R.S.; PATTERSON, J.A.; RICKE, S.C. 2014. Sugar phosphorylation activity in ruminal acetogens. J. Environmental Science and Health (Estados Unidos). 18(25):37-41. https://doi.org/10.1080/10934529.2012.664998

KATO, D.; SUZUKI, Y.; SATOSHI, H.; HAGA, S.; SO, K.; YAMAUCHI, E.; NAKANO, M; ISHIZAKI, H.; CHOI, K.; KATOH, K., ROH, S. 2015. Utilization of digital differential display to identify differentially expressed genes related to rumen development. Animal Science Journal. 87(4):584-590. https://doi.org/10.1111/asj.12448

KIRAT, D.; MASUOKA, J.; HAYASHI, H.; IWANO, H.; YOKOTA, H.; TANIYAMA, H.; KATO, S. 2006. Monocarboxylate transporter 1 (mct1) plays a direct role in short-chain fatty acids absorption in caprine rumen. J. Physiology (Estados Unidos). 576(2):635-647. https://doi.org/10.1113/jphysiol.2006.115931

KIRAT, D.; MATSUDA, Y.; YAMASHIKI, N.; HAYASHI, H.; KATO, S. 2007. Expression, cellular localization, and functional role of monocarboxylate transporter 4 (mct4) in the gastrointestinal tract of ruminants. Gene (Holanda). 391(1-2):140-149. https://doi.org/10.1016/j.gene.2006.12.020

KOHO, N.; MAIJALA, V.; NORBERG, H.; NIEMINEN, M.; PÖSÖ, A.R. 2005. Expression of mct1, mct2 and mct4 in the rumen, small intestine and liver of reindeer (Rangifer tarandus tarandus L.). Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology (Holanda). 141(1):29-34. https://doi.org/10.1016/j.cbpb.2005.03.003

KRISTENSEN, N.B.; HUNTINGTON, G.B.; HARMON, D.L. 2005. Splanchnic carbohydrate and energy metabolism in growing ruminants. In: Burrin D.G.; Mersman H.J. (eds.). Biology of Growing Animals p.405-432. Boston. https://doi.org/10.1016/S1877-1823(09)70024-4

LANGIN, D. 2006. Control of fatty acid and glycerol release in adipose tissue lipolysis. Comptes Rendus - Biologies (Francia). 329(8):598-607. https://doi.org/10.1016/j.crvi.2005.10.008

LEIGHTON, B.; NICHOLAS, A.R.; POGSON, C.I. 1983. The pathway of ketogenesis in rumen epithelium of the sheep. The Biochemical J. (Inglaterra). 216(3):769-772. https://doi.org/10.1042/bj2160769

LIU, L.; ZHUGE, X.; SHIN, H.D.; CHEN, R.R.; LI, J.; DU, G.; CHEN, J. 2015. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from klebsiella pneumoniae. Applied and Environmental Microbiology (Estados Unidos). 81(7):2256-2264. https://doi.org/10.1128/AEM.03572-14

MAAS, L.K.; GLASS, T.L. 1991. Celobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes. Can. J. Microbiol. (Canadá). 37(1):141-147. https://doi.org/10.1139/m91-021

MADRESEH-GHAHFAROKHI, S.; DEHGHANI-SAMANI, A.; DEHGHANI-SAMANI, A. 2018. Ketosis (acetonaemia) in dairy cattle farms: practical guide based on importance, diagnosis, prevention and treatments. J. Dairy, Veterinary & Animal Research (Hungría), 7(6):299-302. doi.org/10.15406/jdvar.2018.07.00230

MANN, S.; YEPES, F.A.L.; BEHLING-KELLY, E.; MCART, J.A.A. 2017. The effect of different treatments for early-lactation hyperketonemia on blood β-hydroxybutyrate, plasma nonesterified fatty acids, glucose, insulin, and glucagon in dairy cattle. J. Dairy Science (Estados Unidos), 100(8):6470-6482. https://doi.org/10.3168/jds.2016-12532

MATSUMOTO, H.; SASAKI, K.; BESSHO, T.; KOBAYASHI, E.; ABE, T.; SASAZAKI, S.; OYAMA, K.; MANNEN, H. 2012. The snps in the acaca gene are effective on fatty acid composition in Holstein milk. Molecular Biology Reports (Suiza). 39(9):8637-8644. https://doi.org/10.1007/s11033-012-1718-5

MIAO, L.; YANG, Y.; LIU, Y.; LAI, L.; WANG, L.; ZHAN, Y.; YIN, R.; YU, M.; LI, CH.; YANG, X.; GE, C. 2019. Glycerol kinase interacts with nuclear receptor nr4a1 and regulates glucose metabolism in the liver. FASEB J.Official Publication of the Federation of American Societies for Experimental Biology (Estados Unidos). 33(6):6736-6747. https://doi.org/10.1096/fj.201800945RR

MILLEN, D.D.; ARRIGONI, M.D.B.; DIAS, R. 2016. Rumenology. Ed. Springer L. (Brasil). 314p.

MURRAY, R.; BENDER, D.; BOTHAM, K.L.; KENNELLY, P.J.; RODWELL, V.W.; WEIL P.A. 2012. Bioquímica ilustrada harper. Ed. McGrawHill (Estados Unidos). 480p.

NAKAMURA, S.; HAGA, S.; KIMURA, K.; MATSUYAMA, S. 2018. Propionate and butyrate induce gene expression of monocarboxylate transporter 4 and cluster of differentiation 147 in cultured rumen epithelial cells derived from preweaning dairy calves. Journal of Animal Science (Inglaterra). 96(11):4902-4911. https://doi.org/10.1093/jas/sky334

NIELSEN, L.; GONZALEZ-GARCIA, R.; MARCELLIN, E.; NAVONE, L.; STOWERS, C.; MCCUBBIN, T. 2017. Microbial propionic acid production. Fermentation (Estados Unidos). 3(2):21. https://doi.org/10.3390/fermentation3020021

NOCEK, J.E.; HERBEIN, J.H.; POLAN, C.E. 1980. Influence of ration physical form, ruminal degradable nitrogen and age on rumen epithelial propionate and acetate transport and some enzymatic activities. The J. Nutrition (Inglaterra). 110(12):2355-2364. https://doi.org/10.1093/jn/110.12.2355

PABON, M. 2004. Notas de clase. Bioquímica ruminal. Ed. Universidad Nacional de Colombia (Bogotá D.C). 50p.

PRATAMA, R.; ARTIKA, I.M.; CHAIDAMSARI, T.; SUGIARTI, H.; PUTRA, S.M. 2014. Isolation and molecular cloning of cellulase gene from bovine rumen bacteria. Current Biochemistry (Indonesia). 1(1):29-36. https://doi.org/10.29244/cb.1.1.29-36

PRATTI DANIEL, J.L.; RESENDE JÚNIOR, J.C. 2012. Absorção e metabolismo de ácidos graxos voláteis pelo rúmen e omaso. Ciencia E Agrotecnologia (Brasil). 36(1):93-99. https://doi.org/10.1590/S1413-70542012000100012

PRATTI DANIEL, J.L.; RESENDE JÚNIOR, J.C.; CRUZ, F.J. 2006. Participação do ruminoretículo e omaso na superfície absortiva total do proventrículo de bovinos. Brazilian J. Veterinary Research and Animal Science (Brasil). 43(5):688-694. https://doi.org/10.11606/issn.1678-4456.bjvras.2006.26579

RATANAKHANOKCHAI, K.; WAEONUKUL, R.; PASON, P.; TACHAAPAIKOON, C.; KYU, K.L.; SAKKA, K.; KOSUGI, A.; MORI, Y. 2013. Paenibacillus curdlanolyticus strain b-6 multienzyme complex: a novel system for biomass utilization. En: Matovic, M.D (ed.). Biomass Now - Cultivation and Utilization. IntechOpen https://doi.org/10.5772/51820

SANGALLI, J.; SAMPAIO, R.V.; DEL COLLADO, J.; COELHO DA SILVEIRA, J.; CAMARA DE BEM, T.H.; PERECIN, F.; SMITH, L.C.; VIEIRA MEIRELLES, F. 2018. Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on h3k9ac in bovine cells, oocytes and embryos. Scientific Reports (Estados Unidos). 8(1):1-18. https://doi.org/10.1038/s41598-018-31822-7

SMITH, B.P. 2013. Large animal internal medicine. Eds. Elsevier (Estados Unidos). 1661p.

STORM, A.C.; KRISTENSEN, N.B.; HANIGAN, M.D. 2012. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating holstein cows. J. Dairy Science (Estados Unidos). 95(6):2919-2934. https://doi.org/10.3168/jds.2011-4239

VAIDYA, J.D.; HORNUNG, B.V.H.; SMIDT, H.; EDWARDS, J.E.; PLUGGE, C.M. 2019. Propionibacterium ruminifibrarum sp. nov., isolated from cow rumen fibrous content. Internal J. Systematic and Evolutionary Microbiology (Inglaterra). 69(8):2584-2590. https://doi.org/https://doi.org/10.1099/ijsem.0.003544

VAN LINGEN, H.J.; PLUGGE, C.M.; FADEL, J.G.; KEBREAB, E. 2016. Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS ONE (Estados Unidos). 11(10):1-18. https://doi.org/10.1371/journal.pone.0161362

VITAL, M.; CHUANG HOWE, A.; TIEDJE, J.M. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (Meta) Genomic Data. American Society for Microbiology (Estados Unidos). 5(2):1-11. https://doi.org/10.1128/mBio.00889-14

WANG, L.; ZHANG, G.; LI, Y.; ZHANG, Y. 2020. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in vfa production in cow rumen. Animals (Inglaterra), 10(2):223. https://doi.org/10.3390/ani10020223

WATFORD, M.; HOD, Y.; CHIAO, Y.; UTTER, F.; HANSON, R.W. 1981. The unique role of the kidney in gluconeogenesis in the chicken. The J. Biological Chemistry (Estados Unidos). 256(19):10023-10027. Disponible desde Internet en: https://www.jbc.org/content/256/19/10023.long

WEBSTER, L.T.; GEROWIN, J.L.; RAKITA, L. 1965. Purification and characteristics of a butyryl coenzime a synthetase from bovine heart mitocondria. The Journal of Biological Chemistry (Estados Unidos). 240(1):29-33.

WEI, Y.; LI, X.; ZHANG, D.; YONGFENG, L. 2019. Comparison of protein differences between high- and low-quality goat and bovine parts based on iTRAQ technology. Food Chemistry (Holanda). 289(3):240-249. https://doi.org/10.1016/j.foodchem.2019.03.052

WEIGAND, E.; YOUNG, J.W.; MCGILLIARD, A.D. 1975. Volatile fatty acid metabolism by rumen mucosa from cattle fed hay or grain. J. Dairy Science (Estados Unidos). 58(9):1294-1300. https://doi.org/10.3168/jds.s0022-0302(75)84709-6

WHITE, D.; DRUMMOND, J.; FUQUA, C. 2012. The physiology and biochemistry of prokaryotes. Eds. Oxford University Press (Estados Unidos). 632p.

WHITE, H.M.; KOSER, S.L.; DONKIN, S.S. 2012. Gluconeogenic enzymes are differentially regulated by fatty acid cocktails in madin-darby bovine kidney cells 1. J. Dairy Science (Estados Unidos). 95(3):1249-1256. https://doi.org/10.3168/jds.2011-4644

WONGKITTICHOTE, P.; MEW, N.A.; CHAPMAN, K.A. 2017. Propionyl-CoA carboxylase–a review. Molecular genetics and metabolism. 122(4):145-152. https://doi.org/10.1016/j.ymgme.2017.10.002

XIANG, E.; HUTTON ODDY, V.; ARCHIBALD, A.L.; VERCOE, P.E.; DALRYMPLE, B.P. 2016. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues. PeerJ (Estados Unidos). 4:e1762. https://doi.org/10.7717/peerj.1762

XU, S.; WU, Z.; ZOU, Y.; LI, S.; CAO, Z. 2017. Evaluation of a hand-held meter to detect subclinical ketosis in dairy cows. Advances in Dairy Research (Estados Unidos). 5(2):2-5. https://doi.org/10.4172/2329-888x.1000173

XU, W.; VERVOORT, J.; SACCENTI, E.; VAN HOEIJ, R.; KEMP, B.; VAN KNEGSEL, A. 2018. Milk metabolomics data reveal the energy balance of individual dairy cows in early lactation. Scientific Reports (Estados Unidos). 8(1):1-11. https://doi.org/10.1038/s41598-018-34190-4

ZHANG, J.; TAN, J.; ZHANG, C.; WANG, Y.; CHEN, X.; LEI, C.; CHEN, H.; FANG, X. 2019. Research on associations between variants and haplotypes of aquaporin 9 (aqp9) gene with growth traits in three cattle breeds. Animal Biotechnology (Inglaterra). https://doi.org/10.1080/10495398.2019.1675681

Citado por