Dinámica de fluidos computacionales (CFD) y su uso para analizar la distribucion de gases al interior de instalaciones pecuarias: una revisión de literatura

Contenido principal del artículo

Autores

Flávio Alves Damasceno
Fernando da Costa Baêta
Marcio Arêdes Martins
Jairo Alexander Osorio Saraz
Ilda de Fátima Ferreira Tinoco

Resumen

Actualmente, uno de los  casos  de  mayor  discusión en la producción animal, es la emisión de gases y de distribución de temperatura asociados al cambio climático y al comportamiento animal, principalmente con gases como metano (CH4) y el amoniaco (NH3). La aplicación de la dinámica de los fluidos computacionales (CfD) para predecir el comportamiento de esos gases, especialmente en el sector de producción animal, esta comenzando a ganar gran importancia. A lo largo de los años, la versatilidad, precisión y la facilidad de uso ofrecida por el CfD  ha  tenido  una  gran  aceptación  en  la  comunidad  de la Ingeniería Agrícola y pecuaria en general. Por lo tanto, el CfD  es  regularmente  utilizado  para  solucionar  problemas ambientales asociados a control climático en instalaciones comerciales de producción animal. Debido a la mejor combinación  entre  la  simulación  computacional  con  CfD y modelos matemáticos, situaciones reales se han simulado con mayor confiabilidad en los últimos años. Este trabajo ofrece una revisión del estado del arte acerca de la aplicación de la técnica con CfD para determinar el comportamiento y distribución de gases al interior de instalaciones pecuarias, mostrando las ventajas y limitaciones de la técnica.

Palabras clave:

Detalles del artículo

Licencia

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. ABREU, P.G.; ABREU, V.M.N. 2000. Ventilação na avicultura de corte. Concórdia: Embrapa Suínos e Aves. 50p.

2. BAÊTA, f.C.; SOUZA, Cf. 1997. Ambiência em edificações Rurais: conforto térmico animal. Viçosa, MG: UfV. 246p.

3. BARTZANAS, T.; KITTAS, C.; SAPOUNAS, A.A.; NIKITA- MARTZOPOULOU, C. 2007. Analysis of airflow through experimental rural buildings: Sensitivity to turbulence models. Biosystems Engineering. 97(2):229-239.

4. BARTZANAS, T., BOULARD, T., KITTAS, C. 2004. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosystems Engineering. 88(1):479-490.

5. BJERG, B.; SVIDT, K.; ZHANG, G.; MORSING, S. 2000. The effect of pen partitions and thermal pig simulators on airflow in a livestock test room. J. Agr. Engineering Res. 77(2):317-326.

6. BJERG, B.; SVIDT, K.; ZHANG, G.; MORSING, S.; JOHNSEN, J.O. 2002. Modeling of air inlets in CfD prediction of airflow in ventilated animal houses. Computers and Electronics in Agriculture, 34(3):223- 235.

7. BLANES-VIDAL, V.; GUIJARRO, E.; BALASCH, S.; TORRES, A.G. 2008. Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building. Biosystems Engineering. 100(1):105-116.

8. BOULARD, T.; KITTAS, C.; ROY, J.C. 2002. Structures and Environment: Convective and Ventilation Transfers in Greenhouses, Part 2: Determination of the Distributed Greenhouse Climate. Biosystems Engineering. 83(2):129-147.

9. BOUWMAN, A.f.; LEE, D.S.; ASMAN, W.A.H.; DENTENER, f.J.; VAN DER HOEK, K.W.; OLIVIER, J.G.J. 1997. A global high-resolution emission inventory for ammonia. Global Biochemical Cycles. 11(1):561-587.

10. CARVALHO, V.f.; YANAGI JR, T.; XIN, H.; GATES, R.S.; DAMASCENO, f.A.; MORAES, S.R.P. 2008. Mathematical Model for Thermal Environment and Broiler Chickens Performance Prediction in Acclimatized Housings. ASAE paper No 701P0408. foz do Iguaçu, Brazil: ASAE.

11. CHOI, K.; ALBRIGHT, L.D.; TIMMONS, M.B. 1998. An application of the k–e turbulence model to predict air distribution in a slot ventilated enclosure. Transactions of the ASAE. 31(2):1804-1814.

12. DAMASCENO, f.A.; AMARAL, A.G.; MARTINS, M.A.; SARAZ, J.A.O.; BAÊTA, f.C. 2010a. Dinâmica do fluido computacional para simulação da temperatura e velocidade do ar em sistema de aquecimento avícola. In: Congresso Brasileiro de Engenharia Agrícola, 38. 2010, Vitória. Anais. Vitória: Soc. Bras. de Eng. Agr.

13. DAMASCENO, f.A.; YANAGI JUNIOR, T.; LIMA, R.R.; GOMES, R.C.C.; MORAES, S.R.P. 2010b. Avaliação do bem-estar de frangos de corte em dois galpões comerciais climatizados. Ciência Agrotecnica, Lavras. 34 (2): 1031-1038.

14. fRACASTORO, G.V.; PERINO, M. 1999. Numerical Simulation of Transient Effects of Window Openings. In: Proceedings of first International One day forum on Natural and Hybrid Ventilation, HybVent forum’99, Sydney, Australia. 425p.

15. GARRISON, M.V.; RICHARD, T.L.; TIQUIA, S.M.; HONEYMAN, M.S. 2001. Nutrient losses from unlines bedded swine hoop structures and an associated windrow composting site. ASAE paper No 01-2238. St. Joseph, Michigan: ASAE. 13-24.

16. GEBREMEDHIN, K.G.; WU, B. 2005. Simulation of flow field of a ventilated and occupied animal space with different inlet and outlet conditions. Journal of Thermal Biology. 30(5):343-353.

17. GEBREMEDHIN, K.G.; WU, B.X. 2003. Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment. J. Thermal Biol. 28(1):301-319.

18. HOff, S.J.; JANNNI, K.A.; JACOBSON, L.D. 1992. Three-dimensional buoyant turbulent flows in a scaled model, slot-ventilated, livestock confinement facility. Transactions of the ASAE. 35(2):671-686.

19. HARRAL, B.B.; BOON, C.R. 1997. Comparison of predicted and measured air flow patterns in a mechanically ventilated livestock building without animals. J. Agr. Eng. Res. 66(2):221-228.

20. JIANG, Y.; CHEN, Q. 2002. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation. Building and Environment. 37(1):379-386.

21. JIANG, Y.; CHEN, E.Q. 2001. Study of natural ventilation in buildings by large eddy simulation. J. Wind Eng. Ind. Aerodyn. 89(13):1155-1178.

22. LEE, I.B.; SHORT, T. 2000. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse. Transactions ASAE. 43(3):745-753.

24. MENEGALI, I.; TINÔCO, I.f.f.; BAÊTA, f.C.; CECON, P.R.; GUIMARÃES, M.C.C.; CORDEIRO, M.B. 2009. Ambiente térmico e concentração de gases em instalações para frangos de corte no período de aquecimento. Rev. Bras. Eng. Agr. Amb. 13(2):984- 990.

25. MICHEL, f.C. Jr.; PECCHIA, J.; SUN, H.; KEENER, H. 2001. Use of a High Rise building and composting to manage swine manure. Proceedings Addressing Animal Production and Environmental Issue (CD). North Carolina State University. Triangle Research Park, NC. Poster, 24.

26. MIRAGLIOTTA, M.Y.; NÄÄS, I.A.; BARACHO, M.S.; ARADAS, M.E.C. 2002. Qualidade do ar de dois sistemas produtivos de frango de corte com ventilação e densidade diferenciadas: estudo de caso. Eng. Agr.. 22(2):1-10.

27. MOSS, A.R.; JOUANY, J.P; NEWBOLD, J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootechnie. 49(1):231-253.

28. MUELLER, H.J.; KRAUSE, K.H. 2007. flow simulation for design of ventilation systems in animal houses. Building Simulation, New York, p.932-936.

29. NADER, A.S.; BARACHO, M.S.; NÄÄS, I.A.; SAMPAIO, C.A.P. 2002. Avaliação da qualidade do ar em creche de suínos. In: Seminário Poluentes Aéreos e Ruídos em Instalações para Produção de Animais. Campinas. Anais. Campinas: UNICAMP. p.49-56.

30. NORTON, T.; GRANT, J.; fALLON, R.; SUN, D. W. 2009. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosystems Eng. 103(1):78-99.

31. NORTON, T.; SUN, D.W; GRANT, J.; fALLON, R.; DODD; V. 2007. Applications of computational fluid dynamics (CfD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Techn. 98(12):2386-2414.

32. OSORIO, J A.; TINOCO, f.f.; CIRO, H.J. 2009. Ammonia: a review about concentration and emission models in livestock structures. Dyna. 76 (158):89-99.

33. PAWAR, S.R.; CIMBALA, J.M.; WHEELER, E.f.; LINDBERG, D.V. 2007. Analysis of poultry house ventilation using computational fluid dynamics. Transactions of the ASABE .50 (4): 1373-1382.

34. PRUEGER, J.H.; EICHINGER, W.E.; HIPPS, L.E.; HATfIELD, J.L.; COOPER, D.I. 2008. Air-flow distortion and turbulence statistics near an animal facility. Atmospheric Environ. 42(3):3301-3314.

35. SAMPAIO, C.A.P.; NAAS, I.A.; NADER, A. 2005. Gases e ruídos em edificações para suínos aplicação das normas NR-15, CIGR e ACGIH. Eng. Agr., Jaboticabal. 25(1):10-18.

36. SEO, I.H.; LEE, I.B.; MOON, O.K.; KIM, H.T.; HWANG, H.S.; HONG, S.W. 2009. Improvement of the ventilation system of a naturally ventilated broiler house in the cold season using computational simulations. Biosystems Engineering. 104(1):106-117.

37. SILVEIRA, N.A.; NAAS, I.A.; MOURA, D.J.; SALGADO, D.D. 2009. Ambiência aérea em maternidade e creche de suínos. Eng. Agr., Jaboticabal. 29(3):348-357.

38. SOMMER, S.G.; DAHL, P. 1999. Nutrient and carbon balance during the composting of deep little. J. Agr. Eng. Res. 74(1):145-153.

39. STAVRAKAKIS, G.M.; KOUKOU, M.K.; VRACHOPOULOS, M.G.; MARKATOS, E.N.C. 2008. Natural cross- ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation. Energy and Buildings. 40(9):1666-1681.

40. SUN, S.H.; KEENER, R.; STOWELL, R.; MICHEL, f.C. 2002. Two-dimensional computational fluid dynamics (CfD) modeling of air and ammonia distribution in a High-RiseTM Hog Building (HRHB). Transactions of the ASAE. 45(5):1559-1568.

41. SUN, S.H.; KEENER, H.; WEI DENG, R.; MICHEL, f.C. 2004. Development and validation of 3-d CfD models to simulate airflow and ammonia distribution in a high-rise™ hog building during summer and winter conditions. Agr. Eng. Internal: the CIGR J. Scient. Res. and Developm. 4(6):1121-1134.

42. TEYE, f.K.; HAUTALA, M.. 2008. Adaptation of an ammonia volatilization model for a naturally ventilated dairy building. Atmospheric Environ. 42(2):4345-4354.

43. TINÔCO, I.f.f.; OSORIO, J.A.S.; GATES, R.S.; DAMASCENO, f.A.; MARIN, O.L.Z. 2010. 3D-CfD modeling of a typical uninsulated and internal misting tunnel ventilated brazilian poultry house. ASAE paper No 1009150. St. Joseph, Pittsburgh: ASAE. p.35-42.

44. TU, J.; YEOH, G.H.; LIU, C. 2007. Approach. Butterworth- Heinemann. 472p.

45. TYRRELL, H.f. 2001. Principles of animal nutrition and mass balance relative to nutrient management. Proceedings Addressing Animal Production and Environmental Issue (CD). North Carolina State University. Triangle Research Park, NC. 324p.

46. VAN WAGENBERG, A.V.; BJERG, B.; BOT, G.P.A. 2004. Measurements and simulation of climatic conditions in the animal occupied zone in a door ventilated room for piglets. Agr. Eng. Internal: The CIGR J. Scient. Res. and Developm. Manuscript BC 03 020.

47. VAN OUWERKERK, E.N.J.; PEDERSEN, S. 1994. Application of the carbon dioxide mass balance method to evaluate ventilation rates in livestock buildings. In: Proc. XII World Congress on Agricultural Engineering, Milano, Italy. p.516-529.

48. WATSON, R.T.; MEIRA fILHO, L.G.; SANHUEZA, E.; JANETOS, T. 1992. Sources and sinks. In: Houghton, J.T; Callander, B.A; Varney, S.K (eds). Climate Change. Cambridge University Press, Cambridge, UK. p.25-46.

49. WORLEY, M.S.; MANBECK, H.B. 1995. Modelling particle transport and air flow in ceiling inlet ventilation systems. Transactions of the ASAE. 38(1): 231–239.

50. ZANOLLA, N.; TINÔCO, I.f.f.; BAÊTA, f.C.; CECON, P.R.; MORAES, S.R.P. 1999. Sistema de ventilação em túnel e lateral na criação de frangos de corte com alta densidade. Rev. Bras. Eng. Agr. e Ambiental, Campina Grande. 3(3):361-366.

51. ZHANG, G.; MORSING, S.; BJERG, B.; SVIDT, K.; STROM, J. S. 2000. Test room for validation of airflow patterns estimated by computational fluid dynamics. J. Agr. Eng. Res. 76(3):141-148.

Descargas

La descarga de datos todavía no está disponible.