Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión

Contenido principal del artículo

Autores

Silvia Patricia López-Zapata https://orcid.org/0000-0001-6834-6794
Dora Janeth García-Jaramillo https://orcid.org/0000-0001-6822-5634
Walter Ricardo López https://orcid.org/0000-0003-2310-7663
Nelson Ceballos-Aguirre https://orcid.org/0000-0002-8463-3379

Resumen

La interacción entre plantas y patógenos es una relación muy dinámica y compleja, que conlleva un alto grado de especificidad y es esta última característica, la que desencadena respuestas tan importantes en la supervivencia de uno u otro. El patosistema formado por tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. lycopersici (Fol) ha sido objeto de múltiples estudios, debido a la importancia de la hortaliza, a nivel mundial y por el impacto económico y ecológico del hongo, responsable de la marchitez vascular, provocando pérdidas que llegan hasta el 100%. Una forma de encontrar alternativas para el manejo de cualquier patosistema es conocer los actores involucrados y los mecanismos que rigen la interacción, a través de avances tecnológicos y científicos, que muestren, claramente, cómo se desarrolla la interacción, a nivel genético. Esta revisión recoge la información de fuentes científicas con énfasis en el conocimiento del hongo, el cultivo del tomate y la defensa vegetal, aplicada a este patosistema, así como los mecanismos moleculares.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. ABDALLAH, R.A.B.; MOKNI-TLILI, S.; NEFZI, A.; KHIAREDDINE, H.J.; DAAMI-REMADI, M. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biological Control. (United States). 97:80-88.
http://dx.doi.org/10.1016/j.biocontrol.2016.03.005
2. AGRIOS, G.N. 2005. Plant pathology. 5th ed. Elsevier Academic Press. 922p.
3. AGRIOS, G.N. 2013. Plant Pathology. J. Chemical Information and Modeling. 53.
https://doi.org/10.1017/CBO9781107415324.00
4. AGRONET. 2021. Information and Communication Network of the Colombian Agricultural Sector. Available online:
http://www.agronet.gov.co/estadistica/Paginas/default.aspx
5. AGUDELO, A.G.; CEBALLOS, N.; OROZCO, F.J. 2011. Caracterización morfológica del tomate tipo cereza (Solanum lycopersicum L.). Agronomía. (Colombia). 19:44-53.
6. AKRAMI, M.; YOUSEFI, Z. 2015. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonistic fungi. Biological Forum- An International Journal. 7(1):887-892.
7. ALI, A.; MUZAFFAR, A.; AWAN, M.F.; DIN, S.; NASIR, I.A.; HUSNAIN, T. 2014. Genetically Modified Foods: Engineered tomato with extra advantages. Advancements in Life Science. (Pakistan). 1(3):139-152.
8. ANDERSEN, E.J.; ALI, S.; BYAMUKAMA, E.; YEN, Y.; NEPAL, M.P. 2018. Disease resistance mechanisms in plants. Genes. (Switzerland). 9(7):339.
https://doi.org/10.3390/genes9070339
9. ANDOLFO, G.; FERRIELLO, F.; TARDELLA, L.; FERRARINI, A.; SIGILLO, L.; FRUSCIANTE, L.; ERCOLANO, M.R. 2014. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato mosaic virus. Plos One. (United States). 9(5):e94963.
https://doi.org/10.1371/journal.pone.0094963
10. ANDOLFO, G.; IOVIENO, P.; FRUSCIANTE, L.; ERCOLANO, M. 2016. Genome-Editing technologies for enhancing plant disease resistance. Frontiers in Plant Science. 7:1813.
https://dx.doi.org/10.3389/fpls.2016.01813
11. ÁVILA, M.K.; ROMERO, H.M. 2017. Plant responses to pathogen attack: molecular basis of qualitative resistance. Rev. Facultad Nacional de Agronomía. (Colombia). 70(2):8225-8235.
https://dx.doi.org/10.15446/rfna.v70n2.64526
12. BÁEZ-VALDEZ, E.P.; CARRILLO-FASIO, J.A.; BÁEZ-SAÑUDO, M.A.; GARCÍA-ESTRADA, R.S.; VALDEZ-TORRES, J.B.; CONTRERAS-MARTÍNEZ, R. 2010. Resistant rootstocks utilization for Fusarium control (Fusarium oxysporum f. sp. lycopersici Snyder and Hansen race 3) in tomato (Lycopersicon esculentum Mill) under shade conditions. Rev. Mexicana de Fitopatología. 28(2):111-123.
13. BERGOUGNOUX, V. 2014. The history of tomato: From domestication to biopharming. Biotechnology Advances. (Netherlands). 32(1):170-189.
https://doi.org/10.1016/j.biotechadv.2013.11.003
14. BIJU, V.C.; FOKKENS, L.; HOUTERMAN, P.M.; REP, M.; CORNELISSEN, B.J.C. 2017. Multiple evolutionary trajectories have led to the emergence of races in Fusarium oxysporum f. sp. lycopersici. Applied and Environmental Microbiology. (United States). 83(4):e02548-16.
https://dx.doi.org/10.1128/AEM.02548-16
15. BLANCA, J.; MONTERO-PAU, J.; SAUVAGE, C.; BAUCHET, G.; ILLA, E.; DÍEZ M., J.; CAÑIZARES, J. 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. (United Kingdom). 16(1):1-19.
https://doi.org/10.1186/s12864-015-1444-1
16. BOLLER, T.; HE, S.Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. (New York). 324(5928):742.
https://doi.org/10.1126/science.1171647
17. BOTERO, V.; HOYOS-CARVAJAL, L.; MARÍN J. 2018. Detection of asymptomatic plants of Solanum lycopersicum L. infected with Fusarium oxysporum using VIS reflectance spectroscopy. Ciencias Hortícolas. (Colombia). 12(2):436-446.
http://doi.org/10.17584/rcch.2018v12i2.7293
18. CAMAGNA, M.; TAKEMOTO, D. 2018. Hypersensitive response in plants. eLS. John Wiley and Sons, Ltd (Chichester, UK). p.1-7.
https://doi.org/10.1002/9780470015902.a0020103.pub2
19. CARMONA, S.L.; BURBANO-DAVID, D.; GÓMEZ, M.; LÓPEZ, W.; CEBALLOS, N.; CASTAÑO-ZAPATA, J.; SIMBAQUEBA, J.; SOTO-SUÁREZ, M. 2020. Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens. (Switzerland). 9(70):1-23.
https://doi.org/10.3390/pathogens9010070
20. CEBALLOS-AGUIRRE, N.; LÓPEZ, W.; OROZCO-CÁRDENAS, M.; MORILLO, Y.; VALLEJO-CABRERA, F. 2017. Use of microsatellites for evaluation of genetic diversity in cherry tomato. Bragantia. (Brazil). 76(2):220-228.
http://dx.doi.org/10.1590/1678-4499.116
21. CEBALLOS-AGUIRRE, N.; VALLEJO, A. 2012. Evaluating the Fruit Production and Quality of Cherry Tomato (Solanum lycopersicum var. cerasiforme). Rev. Facultad Nacional de Agronomía. (Colombia). 65(2):6593-6604.
22. CHEEMA, D.S.; DHALIWAL, M.S. 2005. Hybrid Tomato Breeding. J. New Seeds. (United States). 6(2-3):1-14.
http://dx.doi.org/10.1300/J153v06n02_01
23. COOK, D.E.; MESARICH, C.H.; THOMMA, B.P. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology. (United States). 53:541-563.
https://doi.org/10.1146/annurev-phyto-080614-120114
24. COUTO, D.; ZIPFEL, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology. (United Kingdom). 16(9):537-552.
https://doi.org/10.1038/nri.2016.77
25. DEAN, R.; VAN-KAN, J.A.; PRETORIUS, Z.A.; HAMMOND, KIM.; DI PIETRO, A.; SPANU, P.; RUDD, J.; DICKMAN, M.; KAHMANN, R.; ELLIS, J.; FOSTER, G. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology. (United Kingdom). 13(4):414-30.
https://doi.org/10.1111/j.1364-3703.2011.00783.x
26. DJIDONOU, D.; SIMONNE, A.H.; KOCH, K.E.; BRECHT, J.K.; ZHAO, X. 2016. Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. American Society of Horticultural Science. (United States). 51(12):1618-1624.
https://doi.org/10.21273/HORTSCI11275-16
27. EDEL-HERMANN, V.; LECOMTE, C. 2019. Current status of Fusarium oxysporum Formae speciales and races. Phytophatology. (United States). 109(4):512-530.
https://doi.org/10.1094/PHYTO-08-18-0320-RVW
28. EITAS, T.K.; DANGL, J.L. 2010. NB-LRR proteins: Pairs, pieces, perception, partners, and pathways. Current Opinion in Plant Biology. (Netherlands). 13(4):472-477.
https://doi.org/10.1016/j.pbi.2010.04.007
29. ESSARIOUI, A.; MOKRINI, F.; AFECHTAL, M. 2016. Molecular interactions between tomato and its wilt pathogen Fusarium oxysporum f. sp. lycopersici. Reveu Marocaine des Sciences Agronomiques et Veterinaries. 4(1):66-74.
30. FRANCO, D.A.; ARANGO, J.F.; HURTADO-SALAZAR, A.; CEBALLOS-AGUIRRE, N. 2018. Development, production, and quality of “Chonto” type tomato grafted on cherry tomato introductions. Ceres. (Brazil). 65(2):150-157.
https://doi.org/10.1590/0034-737X201865020006
31. GARCÍA-ENCISO, E.L.; BENAVIDES-MENDOZA, A.; FLORES-LÓPEZ, M.L.; ROBLEDO-OLIVO, A.; JUÁREZ-MALDONADO, A.; GONZÁLEZ-MORALES, S. 2017. A molecular vision of the interaction of tomato plants and Fusarium oxysporum f. sp. lycopersici. IntechOpen.
https://doi.org/10.5772/intechopen.72127
32. GERSZBERG, A.; HNATUSZKO-KONKA, K.; KOWALCZY, T.; KONONOWICZ, A. 2015. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue and Organ Culture (Netherlands). 120:881-902.
https://doi.org/10.1007/s11240-014-0664-4
33. GONZÁLEZ, I.; ARIAS, Y.; PETEIRA, B. 2012. General aspects of the interaction Fusarium oxysporum f. sp. lycopersici-tomato. Protección vegetal. (La Habana). 27(1):1-7.
34. GORDON, T. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Annual Rev. Phytopathology. (United States). 55:23-39.
https://doi.org/10.1146/annurev-phyto-080615-095919
35. GUAN, W.; ZHAO, X.; HASSELL, R.; THIES, J. 2012. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience. (United States). 47(2):164-170.
https://doi.org/10.21273/HORTSCI.47.2.164
36. GURURANI, M.A.; VENKATESH, J.; UPADHYAYA, C.P.; NOOKARAJU, A.; PANDEY, S.K.; PARK, S.W. 2012. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology. (United States). 78:51-65.
https://doi.org/10.1016/j.pmpp.2012.01.002
37. HAMEL, L.P.; NICOLE, M.C.; DUPLESSIS, S.; ELLIS, B.E. 2012. Mitogen-activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. Plant Cell. (United States). 24(4):1327-1351.
https://doi.org/10.1105/tpc.112.096156
38. HERNÁNDEZ-MARTÍNEZ, R.; LÓPEZ-BENÍTEZ, A.; BORREGO-ESCALANTE, F.; ESPINOZA-VELÁZQUEZ, J.; SÁNCHEZ-ASPEYTIA, D.; MALDONADO-MENDOZA, I.E.; LÓPEZ-OCHOA, L.A. 2014. Fusarium oxysporum f. sp. lycopersici in tomato farms in San Luis Potosí. Rev. Mexicana de Ciencias Agrícolas. 5(7):1169-1178.
39. HERRERA, H.; HURTADO, A.; CEBALLOS, N. 2015. Technical and economic study of the elite cherry tomato (Solanum lycopersicum var. cerasiforme) under semi-controlled conditions. Rev. Col. ciencias hortícolas. 9(2):290-300.
http://dx.doi.org/10.17584/rcch.2015v9i2.4185
40. IGNJATOV, M.; MILOSEVIC, D.; NIKOLIC, Z.; GVOZDANOVIC-VARGA, J.; JOVICIC, D.; ZDJELAR, G. 2012. Fusarium oxysporum as causal agent of tomato wilt and fruit rot. Pesticidi i Fitomedicina (Serbia). 27(1):25-31.
https://doi.org/10.2298/PIF1201025I
41. INAMI, K.; KASHIWA, T.; KAWABE, M.; ONOKUBO-OKABE, A.; ISHIKAWA, N.; PÉREZ, E.R.; ARIE, T. 2014. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes. Microbes and Environments. (Japan). 29(2):200-210.
https://dx.doi.org/10.1264/jsme2.ME13184
42. JIMÉNEZ-FERNÁNDEZ, D.; LANDA, B.B.; KANG, S.; JIMÉNEZ-DÍAZ, R.M.; NAVAS-CORTÉS, J.A. 2013. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. Plos One. (United States). 8(4):e61360.
https://doi.org/10.1371/journal.pone.0061360
43. JONES, J.D.G.; DANGL, J.L. 2006. The plant immune system. Nature. (United Kingdom). 444(7117):323-329.
https://doi.org/10.1038/nature05286
44. KANT, P.; REINPRECHT, Y.; MARTIN, C.J.; ISLAM, R.; PAULS, K.P. 2011. Disease resistance/ Pathology/Fusarium. Comprehensive Biotechnology (Canada). 4:729-743.
https://doi.org/10.1016/B978-0-08-088504-9.00263-4
45. KHAN, N.; MAYMON, M.; HIRSCH, A.M. 2017. Combating Fusarium infection using Bacillus- based antimicrobials. Microorganisms. (Switzerland). 5(4):75.
https://dx.doi.org/10.3390/microorganisms5040075
46. KOYYAPPURATH, S. 2015. Histological and molecular approaches for resistance to Fusarium oxysporum f.sp. radicis-vanillae, causal agent of root and stem rot in Vanilla spp. (Orchidaceae). Université de la Reunión (France). 227p.
47. KOYYAPPURATH, S.; CONÉJÉRO, G.; DIJOUX, J.B.; LAPEYRE-MONTÈS, F.; JADE, K.; CHIROLEU, F.; GRISONI, M. 2015. Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae. Frontiers in Plant Science. (Switzerland). 6:1125.
https://dx.doi.org/10.3389/fpls.2015.01125
48. LESLIE, J.F.; SUMMERELL; B.A. 2006. The Fusarium laboratory manual. Blackwell Pub (Ames, IA, USA). 369p.
49. LI, B.; MENG, X.; SHAN, L.; HE, P. 2016. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host and Microbe. (United States). 19(5):641-650.
https://doi.org/10.1016/j.chom.2016.04.011
50. LI, J.; FOKKENS, L.; CONNEELY, L.J.; REP, M. 2020a. Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred. Environmental microbiology (United Kingdom). 22(12):4985-5004.
https://doi.org/10.1111/1462-2920.15095
51. LI, J.; GAO, M.; GABRIEL, D.W.; LIANG, W.; SONG, L. 2020b. Secretome-Wide Analysis of Lysine Acetylation in Fusarium oxysporum f. sp. Lycopersici Provides Novel Insights Into Infection-Related Proteins. Frontiers in microbiology. (Switzerland).11:559440.
https://doi.org/10.3389/fmicb.2020.559440
52. MA, L.J.; GEISER, D.M.; PROCTOR, R.H.; ROONEY, A.P.; O'DONNELL, K.; TRAIL, F.; GARDINER, D.M.; MANNERS, J.M.; KAZAN, K. 2013. Fusarium pathogenomics. Annual Review of Microbiology. (United States). 67(1):399-416.
https://doi.org/10.1146/annurev-micro-092412-155650
53. MCGOVERN, R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection. 73:78-92.
https://doi.org/10.1016/j.cropro.2015.02.021
54. MENG, X.; ZHANG, S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology. (United States). 51:245-266.
https://doi.org/10.1146/annurev-phyto-082712-102314
55. MORALES, N.; ESPINOSA, G.; MORALES, A.; SÁNCHEZ, B.; JIMÉNEZ, M.; MILIAN-GARCÍA, R. 2014. Morphological characterization and evaluation of resistance to Fusarium oxysporum in wild species of the genus Solanum section lycopersicon. Rev. Col. Biotecnología. 16(1):62-73.
http://dx.doi.org/10.15446/rev.colomb.biote.v16n1.38259
56. MURILLO-GÓMEZ, P.; HOYOS, R.; CHAVARRIAGA, P. 2017. Organogenesis in-vitro using three tissue types of tree tomato [Solanum betaceum (Cav.)]. Agronomía Colombiana. 35(1):5-11.
https://dx.doi.org/10.15446/agron.colomb.v35n1.61330
57. MURUGAN, L.; KRISHNAN, N.; VENKATARAVANAPPA, V.; SAHA, S.; MISHRA, A.K.; SHARMA, B.K.; RAI, A.B. 2020. Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India. Biotech. 10(11).
https://doi.org/10.1007/s13205-020-02475-z
58. MUTHAMILARASAN, M.; PRASAD, M. 2013. Plant innate immunity: an updated insight into defense mechanism. J. Biosciences. (India). 38(2):433-449.
https://doi.org/10.1007/s12038-013-9302-2
59. OKUNGBOWA, F.I.; SHITTU, H.O. 2014. Fusarium wilts: an overview. Environmental Research J. 6(2):83-102.
60. ORTIZ, E.; CRUZ, M.; MELGAREJO, L.M.; MARQUÍNEZ, X.; HOYOS-CARVAJAL, L. 2014. Histopathological features of infections caused by Fusarium oxysporum and F. solani in purple passionfruit plants (Passiflora edulis Sims). Summa Phytopathologica. (Brazil). 40(2):134-140.
https://dx.doi.org/10.1590/0100-5405/1910
61. PALACIO, M.N.M.; LÓPEZ, G.E.; ASTUDILLO, Á.R.M.; MASACHE, B.R.S.; CASTILLO, Á.M.J.; MILIÁN-GARCÍA, Y. 2014. Caracterización morfológica y evaluación de resistencia a Fusarium oxysporum en especies silvestres del género Solanum sección Lycopersicon. Rev. Colombiana de Biotecnología. 16(1):62-73.
62. RAMPERSAD, S.N. 2020. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens. (Switzerland). 9(340):21.
http://dx.doi.org/10.3390/pathogens9050340
63. RANJAN, A.; ICHIHASHI, Y.; SINHA, N.R. 2012. The tomato genome: Implications for plant breeding, genomics and evolution. Genome Biology. (United Kingdom). 13(8):1-8.
https://doi.org/10.1186/gb-2012-13-8-167
64. RODRÍGUEZ-ORTEGA, W.M.; MARTÍNEZ, V.; NIEVES, M.; SIMÓN, I.; LIDÓN, V.; FERNÁNDEZ-ZAPATA, J.C.; MARTÍNEZ, N.J.J.; CÁMARA-Z, J.; GARCIA-SÁNCHEZ, F. 2019. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Scientific Reports. (United Kingdom). 9(6733):1-13.
https://doi.org/10.1038/s41598-019-42805-7
65. SEGORBE, D.; DI PIETRO, A.; PÉREZ-NADALES, E.; TURRÀ, D. 2017. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity. Molecular Plant Pathology. (United Kingdom). 18(7):912-924.
https://doi.org/10.1111/mpp.12446
66. SELIM, E.M.; EL-GAMMAL, N.A. 2015. Role of fusaric acid mycotoxin in pathogensis process of tomato wilt disease caused by Fusarium oxysporum. Bioprocessing &. Biotechniques. (USA). 5(10):255.
http://dx.doi.org/10.4172/2155-9821.1000255
67. SINGH, V.K.; SINGH, H.B.; UPADHYAY, R.S. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemestry. (Netherlands). 118:320-332.
https://doi.org/10.1016/j.plaphy.2017.06.028
68. SRINIVAS, C.; NIRMALA, D.; NARASIMHA MURTHY, K.; MOHAN, C.D.; LAKSHMEESHA, T.R.; SINGH, B.; KALAGATUR, N.K.; NIRANJANA, S.R.; HASHEM, A.; ALQARAWI, A.A.; TABASSUM, B.; ABD_ALLAH, E.F.; CHANDRA NAYAKA, S.; SRIVASTAVA, R.K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi J. Biological Sciences. 26(7):1315-1324.
https://doi.org/10.1016/j.sjbs.2019.06.002
69. SUTHERLAND, R.; VILJOEN, A.; MYBURG, A.A.; VAN DEN BERG, N. 2013. Pathogenicity associated genes in Fusarium oxysporum f. sp. cubense race 4. South African J. of Science. 109(5-6):1-10
http://dx.doi.org/10.1590/sajs.2013/20120023
70. TAMPOARE, G.B.; MILLIAR, G.; ADAZABRA, A.N. 2012. Analyzing the economic benefit of fresh tomato production at the Tono irrigation scheme in upper east region of Ghana. Elixir Agriculture. (Poland). 3(13):14613-14617.
71. TRONG, L.V.; TUONG, L.Q.; THINH, B.B.; KHOI, N.T.; TRONG, V.T. 2019. Physiological and biochemical changes in tomato fruit (Solanum lycopersicum L.) during growth and ripening cultivated in Vietnam. Bioscience Research. (Pakistan). 16(2):1736-1744.
72. VAN DER DOES, H.C.; CONSTANTIN, M.E.; HOUTERMAN, P.M.; TAKKEN, F.L.; CORNELISSEN, B.J.; HARING, M.A.; VAN DER BURG, H.A.; REP, M. 2019. Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. European J. Plant Pathology. 154:55-65.
https://doi.org/10.1007/s10658-018-1596-3
73. WANG, B.; YU, H.; JIA, Y.; DONG, Q.; STEINBERG, C.; ALABOUVETTE, C.; EDEL-HERMANN, V.; KISTLER, C.; YE, K.; MA, L.J.; GUO, L. 2020. Chromosome-Scale Genome Assembly of Fusarium oxysporum Strain Fo47, a Fungal Endophyte and Biocontrol Agent. Mol. Plant Microbe Interact. (United States). 33(9):1108-1111.
https://doi.org/10.1094/mpmi-05-20-0116-a
74. YADETA, K.; THOMMA, B.P.H. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in PlantScience. (Switzerland). 4(97):1-12.
https://doi.org/10.3389/fpls.2013.00097

Descargas

La descarga de datos todavía no está disponible.