Modelo estadístico de la descontaminación de aguas residuales que contienen Carbendazim mediante foto-Fenton
Statistical modeling of decontamination of wastewater containing Carbendazim using photo-Fenton
Contenido principal del artículo
Resumen
La fotocatálisis homogénea foto-Fenton es uno de los procesos de oxidación avanzada más utilizados en el tratamiento de aguas residuales con contenido de pesticidas, donde la optimización de la dosis de catalizador y el agente oxidante, teniendo como respuesta la mineralización en términos de carbón orgánico total (COT) o la eliminación del contaminante específico, son el objetivo de cualquier diseño experimental. El desarrollo experimental en los procesos de tratamiento requiere la ejecución de una cantidad significativa de condiciones experimentales que necesitan el uso de reactivos, energía y tiempo de ejecución, por lo tanto, el modelamiento de este tipo de fenómenos surge como una alternativa a esta limitante en los tratamientos de aguas residuales. En esta investigación, se evaluó la influencia de los factores FeSO4 y H2O2, cada uno en tres niveles, en la mineralización de una solución sintética del insecticida Carbendazim (50 mg.L-1), en términos de COT, mediante un modelo de regresión lineal múltiple y optimizado por una superficie de respuesta. Los principales resultados establecieron que el mejor ajuste del modelo se da teniendo en cuenta la interacción entre el FeSO4 y el H2O2 (X1*X2) y los términos cuadráticos de cada una de ellas (X21,X22) con p-values <0,05 y que la validación del modelo, mediante la técnica Leave-One-Out Cross Validation (LOOCV), así como la exactitud y la precisión, mediante el análisis de residuos y el supuesto de mínimos cuadrados ordinarios, establecen que las conclusiones que se deriven de él son válidas
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
AGUAS, Y.; HINCAPIE, M.; FERNÁNDEZ-IBÁÑEZ, P.; POLO-LÓPEZ, M.I. 2017. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. Science of The Total Environment. 607-608:1213-1224. https://doi.org/10.1016/j.scitotenv.2017.07.085 DOI: https://doi.org/10.1016/j.scitotenv.2017.07.085
BADII, M.H.; LANDEROS, J. 2015. Plaguicidas que afectan a la salud humana y la sustentabilidad. CULCYT Cultura Científica y Tecnológica. 19(4).
DE LA OBRA, I.; PONCE-ROBLES, L.; MIRALLES-CUEVAS, S.; OLLER, I.; MALATO, S.; SÁNCHEZ PÉREZ, J. 2017. Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catalysis Today. 287:10-14. https://doi.org/10.1016/j.cattod.2016.12.028 DOI: https://doi.org/10.1016/j.cattod.2016.12.028
DONADELLI, J.A.; BERARDOZZI, E.; CARLOS, L.; GARCÍA EINSCHLAG, F.S. 2020. Continuous treatment of an azo dye based on a combined ZVI/Photo-Fenton setup. Process modelling by response surface methodology. Journal of Water Process Engineering. 37:101480. https://doi.org/10.1016/j.jwpe.2020.101480 DOI: https://doi.org/10.1016/j.jwpe.2020.101480
ESTEBAN GARCÍA, B.; RIVAS, G.; ARZATE, S.; SÁNCHEZ PÉREZ, J.A. 2018. Wild bacteria inactivation in WWTP secondary effluents by solar Photo-Fenton at neutral pH in raceway pond reactors. Catalysis Today. 313:72-78. https://doi.org/10.1016/j.cattod.2017.10.031 DOI: https://doi.org/10.1016/j.cattod.2017.10.031
GOJUN, M.; LJUBIĆ, A.; BAČIĆ, M.; JURINJAK TUŠEK, A.; ŠALIĆ, A.; ZELIĆ, B. 2021. Model-to-model: Comparison of mathematical process models of lipase catalysed biodiesel production in a microreactor. Computers & Chemical Engineering. 145:107200. https://doi.org/10.1016/j.compchemeng.2020.107200 DOI: https://doi.org/10.1016/j.compchemeng.2020.107200
GOMES JÚNIOR, O.; SANTOS, M.G.B.; NOSSOL, A.B.S.; STARLING, M.C.V.M.; TROVÓ, A.G. 2021. Decontamination and toxicity removal of an industrial effluent containing pesticides via multistage treatment: Coagulation-flocculation-settling and Photo-Fenton process. Process Safety and Environmental Protection. 147:674-683. https://doi.org/10.1016/j.psep.2020.12.021 DOI: https://doi.org/10.1016/j.psep.2020.12.021
GONÇALVES, B.R.; GUIMARÃES, R.O.; BATISTA, L.L.; UEIRA-VIEIRA, C.; STARLING, M.C.V.M.; TROVÓ, A.G. 2020. Reducing toxicity and antimicrobial activity of a pesticide mixture via Photo-Fenton in different aqueous matrices using iron complexes. Science of The Total Environment. 740:140152. https://doi.org/10.1016/j.scitotenv.2020.140152 DOI: https://doi.org/10.1016/j.scitotenv.2020.140152
KUSIC, H.; KOPRIVANAC, N.; HORVAT, S.; BAKIJA, S.; BOZIC, A.L. 2009. Modeling dye degradation kinetic using dark- and Photo-Fenton type processes. Chemical Engineering Journal. 155(1-2):144-154. https://doi.org/10.1016/j.cej.2009.07.029 DOI: https://doi.org/10.1016/j.cej.2009.07.029
LIBERATORE, L.; BRESSAN, M.; BELLI, C.; LUSTRATO, G.; RANALLI, G. 2012. Chemical and biological combined treatments for the removal of pesticides from wastewaters. Water, Air, and Soil Pollution. 223(8):4751-4759. https://doi.org/10.1007/s11270-012-1230-5 DOI: https://doi.org/10.1007/s11270-012-1230-5
LIPPS, W.C.; BRAUN-HOWLAND, E.B.; BAXTER, T.E. 2022. Standard methods for the examination of water and wastewater. American 24th edition. Public Health Association, American Water Works Association, and Water Environment Federation. p.1516
LÓPEZ-VINENT, N.; CRUZ-ALCALDE, A.; GIMÉNEZ, J.; ESPLUGAS, S.; SANS, C. 2021. Improvement of the Photo-Fenton process at natural condition of pH using organic fertilizers mixtures: Potential application to agricultural reuse of wastewater. Applied Catalysis B: Environmental. 290:120066. https://doi.org/10.1016/j.apcatb.2021.120066 DOI: https://doi.org/10.1016/j.apcatb.2021.120066
MITSIKA, E.E.; CHRISTOPHORIDIS, C.; FYTIANOS, K. 2013. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples: Kinetic study of the degradation and optimization using response surface methodology. Chemosphere. 93(9):1818-1825. https://doi.org/10.1016/j.chemosphere.2013.06.033 DOI: https://doi.org/10.1016/j.chemosphere.2013.06.033
PRETE, P.; FIORENTINO, A.; RIZZO, L.; PROTO, A.; CUCCINIELLO, R. 2021. Review of aminopolycarboxylic acids–based metal complexes application to water and wastewater treatment by (Photo-)Fenton process at neutral pH. Current Opinion in Green and Sustainable Chemistry. 28:100451. https://doi.org/10.1016/j.cogsc.2021.100451 DOI: https://doi.org/10.1016/j.cogsc.2021.100451
SANNINO, D.; VAIANO, V.; CIAMBELLI, P.; ISUPOVA, L.A. 2013. Mathematical modelling of the heterogeneous Photo-Fenton oxidation of acetic acid on structured catalysts. Chemical Engineering Journal. 224:53-58. https://doi.org/10.1016/j.cej.2013.01.078 DOI: https://doi.org/10.1016/j.cej.2013.01.078
SERRA-CLUSELLAS, A.; DE ANGELIS, L.; LIN, C.-H.; VO, P.; BAYATI, M.; SUMNER, L.; LEI, Z.; AMARAL, N.B.; BERTINI, L.M.; MAZZA, J.; PIZZIO, L.R.; STRIPEIKIS, J.D.; RENGIFO-HERRERA, J.A.; FIDALGO DE CORTALEZZI, M.M. 2018. Abatement of 2,4-D by H2O2 solar photolysis and solar Photo-Fenton-like process with minute Fe(III) concentrations. Water Research. 144:572-580. https://doi.org/10.1016/j.watres.2018.07.072 DOI: https://doi.org/10.1016/j.watres.2018.07.072
SGROI, M.; SNYDER, S.A.; ROCCARO, P. 2020. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation. Chemosphere. 128527. https://doi.org/10.1016/j.chemosphere.2020.128527 DOI: https://doi.org/10.1016/j.chemosphere.2020.128527
SUN, S.; SIDHU, V.; RONG, Y.; ZHENG, Y. 2018. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: a Review. Current Pollution Reports. 4(3):240-250. https://doi.org/10.1007/s40726-018-0092-x DOI: https://doi.org/10.1007/s40726-018-0092-x
SAINI, R.; KUMAR, P. 2016. Optimization of chlorpyrifos degradation by Fenton oxidation using CCD and ANFIS computing technique. Journal of Environmental Chemical Engineering. 4(3):2952-2963. https://doi.org/10.1016/j.jece.2016.06.003 DOI: https://doi.org/10.1016/j.jece.2016.06.003
SCHENONE, A.V.; CONTE, L.O.; BOTTA, M.A.; ALFANO, O.M. 2015. Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM). Journal of Environmental Management. 155:177-183. https://doi.org/10.1016/j.jenvman.2015.03.028 DOI: https://doi.org/10.1016/j.jenvman.2015.03.028
TALWAR, S.; VERMA, A.K.; SANGAL, V.K. 2019. Modeling and optimization of fixed mode dual effect (Photocatalysis and Photo-Fenton) assisted Metronidazole degradation using ANN coupled with genetic algorithm. Journal of Environmental Management. 250:109428. https://doi.org/10.1016/j.jenvman.2019.109428 DOI: https://doi.org/10.1016/j.jenvman.2019.109428
TOOR, U.A.; DUONG, T.T.; KO, S.Y.; HUSSAIN, F.; OH, S.E. 2021. Optimization of Fenton process for removing TOC and color from swine wastewater using response surface method (RSM). Journal of Environmental Management. 279:1-10. https://doi.org/10.1016/j.jenvman.2020.111625 DOI: https://doi.org/10.1016/j.jenvman.2020.111625
VAGI, M.C.; PETSAS, A.S. 2019. Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defied by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007-2018). Journal of Environmental Chemical Engineering. 8(1):102940. https://doi.org/10.1016/j.jece.2019.102940 DOI: https://doi.org/10.1016/j.jece.2019.102940