ARN de interferencia (ARNi): una tecnología novedosa con potencial para el control de insectos plaga

Contenido principal del artículo

Autores

Daniel Noriega
Arnubio Valencia
Bernardo Villegas

Resumen

El ARN de interferencia (ARNi) es un mecanismo biológico, ampliamente distribuido en eucariotas, por el cual, se consigue silenciar genes, mediante moléculas de ARN de doble cadena (ARNdc). El descubrimiento de este mecanismo, se llevó hace poco más de 15 años y, desde entonces, se han realizado diferentes investigaciones enfocadas, principalmente, a comprender mejor cómo funciona, su función en diferentes organismos, su uso para describir funciones de genes específicos y las potenciales aplicaciones que tendría en el desarrollo tecnológico, en otras áreas de la ciencia. El silenciamiento de genes se da por la interacción de complejos enzimáticos en el citoplasma con pequeñas moléculas de ARN (siRNA), las cuales, actúan sobre el ARN mensajero (ARNm) endógeno, impidiendo que sea traducido a proteína. Es un hecho que el ARNi puede ser una tecnología alternativa en el control de plagas de importancia agrícola, a través del silenciamiento selectivo de genes, considerados esenciales para la sobrevivencia de la plaga. La implementación de esta tecnología involucra una serie de estudios, que van desde la identificación de genes blanco, el diseño de secuencias de ARNdc, el desarrollo de bioensayos y pruebas en campo, que permitan evidenciar los reales efectos del silenciamiento y la evaluación de factores asociados, que pudieran generar variabilidad del proceso de silenciamiento, investigaciones que son necesarias para que esta tecnología se establezca, finalmente, en el mercado. El presente artículo presenta las bases teóricas del ARNi, los logros de esta tecnología, así como su potencial para el control de insectos plaga.

 

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Referencias

1. BAUM, J.A.; BOGAERT, T.; CLINTON, W.; HECK, G.R.; FELDMANN, P.; ILAGAN, O.; ROBERTS, J. 2007. Control of coleopteran insect pests through RNA Interference. Nat. Biotechnol. (United Kingdom). 25(11):1322-1326.

2. BAUM, J.A.; ROBERTS, J. 2014. Progress Towards RNAi-Mediated Insect Pest Management. En: Dhadialla, T.; Gill, S. (eds). Insect midgut and insecticidal proteins. Ed. Academic Press (United States). p.249-295.

3. BELLÉS, X. 2010. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Ann. Rev. Entomol. (United States). 55(1):111-128.

4. BERNSTEIN, E.; CAUDY, A.A.; HAMMOND, S.M.; HANNON, G.J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. (United Kingdom). 409(6818):363-366.

5. BERNSTEIN, E.; KIM, S.Y.; CARMELL, M.A.; MURCHISON, E.P.; ALCORN, H.; LI, M.Z.; HANNON, G.J. 2003. Dicer is essential for mouse development. Nat. Genet. (United Kingdom). 35(3):215-217.

6. BILLMYRE, R.B.; CALO, S.; FERETZAKI, M.; WANG, X.; HEITMAN, J. 2013. RNAi function, diversity, and loss in the fungal kingdom. Chromosome Res. (Netherlands). 21(6-7):561-572.

7. BLEVINS, T.; PONTVIANNE, F.; COCKLIN, R.; PODICHETI, R.; CHANDRASEKHARA, C.; YERNENI, S.; PIKAARD, C.S. 2014. A two-step process for epigenetic inheritance in Arabidopsis. Mol. Cell. (United States). 54(1):30-42.

8. BOROVSKY, D. 2005. Insect peptide hormones and RNA- mediated interference (RNAi): promising technologies for future plant protection. Phytoparasitica. (Netherlands). 33(2):109-112.

9. BRENNECKE, J.; MALONE, C.D.; ARAVIN, A.A.; SACHIDANANDAM, R.; STARK, A.; HANNON, G.J.; 2008. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science. (United States). 322(5906):1387-1392.

10. BURTON, N.O.; BURKHART, K.B.; KENNEDY, S. 2011. Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans. Proc. Nal. Acad. Sci. U.S.A. (United States). 108(49):19683-19688.

11. CASTEL, S.E.; MARTIENSSEN, R.A. 2013. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. (United Kingdom). 14(2):100-112.

12. CHEN, M.; DU, Q.; ZHANG, H.; WANG, X.; LIANG, Z. 2007. High-throughput screening using siRNA (RNAi) libraries. Expert. Rev. Mol. Diagn. (United Kingdom). 7(3):281-291.

13. DYKXHOORN, D.M.; LIEBERMAN, J. 2005. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Ann. Rev. Med. (United States). 56(1):401-423.

14. ELBASHIR, S.M.; LENDECKEL, W.; TUSCHL, T. 2001. RNA interference is mediated by 21-and 22-nucleotide RNAs. Gene. Dev. (United States). 15(2):188-200.

15. FIRE, A.; XU, S.; MONTGOMERY, M.K.; KOSTAS, S.A.; DRIVER, S.E.; MELLO, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391(6669):806-811.

16. GORDON, K.H.; WATERHOUSE, P.M. 2007. RNAi for insect-proof plants. Nat. Biotechnol. 25(11):1231-1232.

17. GUANG, S.; BOCHNER, A.F.; BURKHART, K.B.; BURTON, N.; PAVELEC, D.M.; KENNEDY, S. 2010. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature. 465(7301):1097-1101.

18. GUO, S.; KEMPHUES, K.J. 1995. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. (United States). 81(4):611-620.

19. HAJERI, S.; KILLINY, N.; EL-MOHTAR, C.; DAWSON, W.O.; GOWDA, S. 2014. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J. Biotechnol. (Netherlands). 176:42-49.

20. HAMMOND, S.M. 2005. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. (Netherlands). 579(26):5822-5829.

21. HOLOCH, D.; MOAZED, D. 2015. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16(2):71-84.

22. HUVENNE, H.; SMAGGHE, G. 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. (United Kingdom). 56(3):227-235.

23. KHAJURIA, C.; VÉLEZ, A.; RANGASAMY, M.; WANG, H.; FISHILEVICH, E.; FREY, M.; SIEGFRIED, B. 2015. Parental RNA Interference of Genes Involved in Embryonic Development of the Western Corn Rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochem. Mol. Biol. (United Kingdom). 63(1):54-62.

24. KHAN, A.; ASHFAQ, M.; KISS, Z.; KHAN, A.; MANSOOR, S.; FALK, B. 2013. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLOS One. 8(9):e73657.

25. KIM, Y.H.; ISSA, M.S.; COOPER, A.M.; ZHU, K.Y. 2015. RNA interference: Applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. (United States). 120:109- 117.

26. KOCH, A.; KOGEL, K.H. 2014. New wind in the sails: improving the agronomic value of crop plants through RNAi‐mediated gene silencing. Plant Bio-technol. J. (United Kingdom). 12(7):821-831.

27. KOLE, R.; KRAINER, A.R.; ALTMAN, S. 2012. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discovery. (United Kingdom). 11(2):125-140.

28. KUTTENKEULER, D.; BOUTROS, M. 2004. Genomewide RNAi as a route to gene function in Drosophila. Brief. Funct. Gen. Prot. (United Kingdom). 3(2):168-176.

29. LEVIN, D.M.; BREUER, L.N.; ZHUANG, S.; ANDERSON, S.A.; NARDI, J.B.; KANOST, M.R. 2005. A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 35(5):369-380.

30. LI, C.; VAGIN, V.V.; LEE, S.; XU, J.; MA, S.; XI, H.; ZAMORE, P.D. 2009. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 137(3):509-521.

31. LIAO, Y.; TANG, L. 2015. Inducible RNAi system and its application in novel therapeutics. Crit. Rev. Biotechnol. (United Kingdom). 1:1-9.

32. LINGEL, A.; SIMON, B.; IZAURRALDE, E.; SATTLER, M. 2004. Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol. (United Kingdom). 11(6):576-577.

33. LIU, J.; SMAGGHE, G.; SWEVERS, L. 2013. Transcriptional response of BmToll9-1 and RNAi machinery genes to exogenous dsRNA in the midgut of Bombyx mori. J. Insect Physiol. 59(6):646-654.

34. LIU, S.; DING, Z.; ZHANG, C.; YANG, B.; LIU, Z. 2010. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 40(9):666-671.

35. MALONE, C.D.; BRENNECKE, J.; DUS, M.; STARK, A.; MCCOMBIE, W.R.; SACHIDANANDAM, R.; HANNON, G.J. 2009. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 137(3):522-535.

36. MAO, Y.B.; CAI, W.J.; WANG, J.W.; HONG, G.J.; TAO, X.Y.; WANG, L.J.; CHEN, X.Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25(11):1307-1313.

37. MAO, Y.B.; TAO, X.Y.; XUE, X.Y.; WANG, L.J.; CHEN, X.Y. 2011. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res. (Netherlands). 20(3):665-673.

38. MARTÍNEZ, J.; PATKANIOWSKA, A.; URLAUB, H.; LÜHRMANN, R.; TUSCHL, T. 2002. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 110(5):563-574.

39. MELLO, C.; CONTE, D. 2004. Revealign the world of RNA interference. Nature. 431(7006):338-342.

40. NANDETY, R.S.; KUO, Y.W.; NOURI, S.; FALK, B.W. 2015. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered. (United States). 6(1):8-19.

41. NAPOLI, C.; LEMIEUX, C.; JORGENSEN, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. (United States). 2(4):279-289.

42. OZCAN, G.; OZPOLAT, B.; COLEMAN, R.; SOOD, A.; LOPEZ-BERESTEIN, G. 2015. Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Delivery Rev. (Netherlands). 87:108-119.

43. PITINO, M.; COLEMAN, A.D.; MAFFEI, M.E.; RIDOUT, C.J.; HOGENHOUT, S.A. 2011. Silencing of aphid genes by dsRNA feeding from plants. PLOS One. 6(10):e25709.

44. PRICE, D.R.; GATEHOUSE, J.A. 2008. RNAi-mediated crop protection against insects. Trends Biotechnol. (United Kingdom). 26(7):393-400.

45. SARKIES, P.; MISKA, E.A. 2014. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. (United Kingdom). 15(8):525-535.

46. SCOTT, J.G.; MICHEL, K.; BARTHOLOMAY, L.C.; SIEGFRIED, B.D.; HUNTER, W.B.; SMAGGHE, G.; DOUGLAS, A.E. 2013. Towards the elements of successful insect RNAi. J. Insect Physiol. 59(12):1212-1221.

47. SEN, G.L.; BLAU, H.M. 2006. A brief history of RNAi: the silence of the genes. FASEB. J. (United States). 20(9):1293-1299.

48. TAO, X.Y.; XUE, X.Y.; HUANG, Y.P.; CHEN, X.Y.; MAO, Y.B. 2012. Gossypol‐enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Mol. Ecol. (United Kingdom). 21(17):4371-4385.

49. THAKUR, N.; UPADHYAY, S.K.; VERMA, P.C.; CHANDRASHEKAR, K.; TULI, R.; SINGH, P.K. 2014. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase a gene. PLOS One. 9(3):e87235.

50. TOMOYASU, Y.; WHEELER, S.R.; DENELL, R.E. 2005. Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature. 433(7026):643-647.

51. UPADHYAY, S.K.; CHANDRASHEKAR, K.; THAKUR, N.; VERMA, P.C.; BORGIO, J.F.; SINGH, P.K.; TULI, R. 2011. RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J. Biosc. (India). 36(1):153-161.

52. WANG, Y.; JURANEK, S.; LI, H.; SHENG, G.; WARDLE, G.S.; TUSCHL, T.; PATEL, D.J. 2009. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. 461(7265):754-761.

53. WANG, Z.; DONG, Y.; DESNEUX, N.; NIU, C. 2013. RNAi Silencing of the HaHMG-CoA Reductase Gene Inhibits Oviposition in the Helicoverpa armigera Cotton Bollworm. PLOS One. 8(7):e67732.

54. WHANGBO, J.S.; HUNTER, C.P. 2008. Environmental RNA interference. Trends. Genet. (United Kingdom). 24(6):297-305.

55. WHYARD, S.; SINGH, A.D.; WONG, S. 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39(11):824-832.

56. WURIYANGHAN, H.; FALK, B. 2013. RNA Interference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant tobacco mosaic virus (TMV). PLOS One. 8(6):e66050.

57. WURIYANGHAN, H.; ROSA, C.; FALK, B.W. 2011. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PLOS One. 6(11): e27736.

58. XIONG, Y.; ZENG, H.; ZHANG, Y.; XU, D.; QIU, D. 2013. Silencing the HaHR3 gene by transgenic plantmediated RNAi to disrupt Helicoverpa armigera development. Int. J. Biol. Sci. (Australia). 9(4):370.

59. XUE, X.Y.; MAO, Y.B.; TAO, X.Y.; HUANG, Y.P.; CHEN, X.Y. 2012. New approaches to agricultural insect pest control based on RNA interference. En: Jockusch, E. (ed). Small RNAs: their diversity, roles and practical uses. Ed. Academic Press (United States). p.73-106.

60. YOGINDRAN, S.; RAJAM, M.V. 2015. RNAi for Crop Improvement. En: Bahadur, B.; Rajam, M.V.; Sahijram, L.; Krishnamurthy, K.V. (eds). Plant Biology and Biotechnology. Ed. Springer India (New Delhi). p.623-637.

61. ZAMORE, P.D.; TUSCHL, T.; SHARP, P.A.; BARTEL, D.P. 2000. RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 101(1):25-33.

62. ZHA, W.; PENG, X.; CHEN, R.; DU, B.; ZHU, L.; HE, G. 2011. Knockdown of midgut genes by dsRNA- transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLOS One. 6(5):e20504.

63. ZHANG, X.; ZHANG, J.; ZHU, K.Y. 2010. Chitosan/double‐stranded RNA nanoparticle‐mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect. Mol. Biol. (United Kingdom). 19(5):683-693.

64. ZHAO, C.; GONZALES, M.A.A.; POLAND, T.M.; MITTAPALLI, O. 2015. Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis). J. Insect Physiol. 72:70-78.

65. ZHU, F.; SAMS, S.; MOURAL, T.; HAYNES, K.F.; POTTER, M.F.; PALLI, S.R. 2012. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLOS One. 7(2):e31037-e31037.

66. ZHU, F.; XU, J.; PALLI, R.; FERGUSON, J.; PALLI, S.R. 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest. Manag. Sci. (United Kingdom). 67(2):175-182.

67. ZOU, G.M.; WU, W.; CHEN, J.; ROWLEY, J.D. 2003. Duplexes of 21‐nucleotide RNAs mediate RNA interference in differentiated mouse ES cells. Biol. Cell. (United States). 95(6):365-371.

Descargas

La descarga de datos todavía no está disponible.