Efecto del tratamiento y tiempo de almacenamiento sobre los compuestos funcionales de subproductos de mora y fresa

Effect of treatment and storage time on the functional compounds of blackberry and strawberry by-products

Contenido principal del artículo

Leidy Aguirre
Laura Cubillos
Martha Tarazona-Díaz
Ligia Rodriguez

Resumen

Cerca de un tercio de las partes comestibles de los alimentos para el consumo humano se pierden, siendo mermas asociadas a factores de toda la cadena de abastecimiento. Dentro de dichos alimentos, se destacan la fresa (Fragaria ananassa) y la mora (Rubus glaucus Benth), frutas que han demostrado alto poder antioxidante, siendo relacionado con la prevención o el tratamiento de enfermedades. Por consiguiente, con el propósito de evidenciar el potencial para la obtención de compuestos de interés en los subproductos del procesamiento de dichas frutas, el presente estudio, se enfocó en la caracterización de los parámetros fisicoquímicos, color, poder antioxidante y vitamina C, en cuatro condiciones de conservación, durante cuatro semanas; estas fueron: coproducto fresco, refrigerado, secado convencional y liofilización, siendo caracterizadas también por su contenido de minerales. A partir de los resultados, se evidenció baja concentración de sólidos solubles, pH variable, entre 3,2 y 6,4, así como parámetros de color estables, durante el almacenamiento. Adicionalmente, los coproductos con mayor poder antioxidante fueron la semilla de mora liofilizada y el lodo de mora por secado convencional, superando al residuo de fresa en cualquier condición, según los ensayos FRAP y DPPH, respectivamente; no obstante, todas las muestras presentaron bajos contenidos en vitamina C, mientras que se caracterizaron por su alto contenido en potasio y hierro. Por consiguiente, lo anterior, muestra el interés por la obtención de compuestos, como minerales y antioxidantes, a partir de los desechos de mora y de fresa, así como su uso en productos con alto valor agregado.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

AOAC INTERNATIONAL. 1995. 943.02. pH of flour. In Official methods of analysis of AOAC International (16th ed.). Arlington: AOAC International

ATHMASELVI, K.A.; KUMAR, C.; POOJITHA, P. 2017. Influence of temperature, voltage gradient and electrode on ascorbic acid degradation kinetics during ohmic heating of tropical fruit pulp. J. Food Meas. Charact. 11(1):144-155. https://doi.org/10.1007/s11694-016-9381-5

BENZIE, I.F.F.; STRAIN, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: the FRAP assay. Anal. Biochem. 239(1):70-76. https://doi.org/10.1006/abio.1996.0292

BERNAL DE RAMÍREZ, I. 1998. Fruits and vegetables and their products. In: Food Analysis (3rd ed.). Bogotá: Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. p.114-116.

BRAND-WILLIAMS, W.; CUVELIER, M.E.; BERSET, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

CAPOCASA, F.; SCALZO, J.; MEZZETTI, B.; BATTINO, M. 2008. Combining quality and antioxidant attributes in the strawberry: The role of genotype. Food Chem. 111(4):872-878. https://doi.org/10.1016/j.foodchem.2008.04.068

CASSIDY, A.; BERTOIA, M.; CHIUVE, S.; FLINT, A.; FORMAN, J.; RIMM, E.B. 2016. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutrit. 104(3):587-594. https://doi.org/10.3945/ajcn.116.133132

CHANG, C.L.; CHEN, H.S.; SHEN, Y.C.; LAI, G.H.; LIN, P.K.; WANG, C.M. 2013. Phytochemical composition, antioxidant activity and neuroprotective effect of Crataegus pinnatifida fruit. South Afr. J. Bot. 88:432-437. https://doi.org/10.1016/j.sajb.2013.08.017

DA SILVA, L.M.R.; DE FIGUEIREDO, E.A.T.; RICARDO, N.M.P.S.; VIEIRA, I.G.P.; DE FIGUEIREDO, R.W.; BRASIL, I.M.; GOMES, C.L. 2014. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 143:398-404. https://doi.org/10.1016/j.foodchem.2013.08.001

DE SOUZA, V.R.; PEREIRA, P.A.P.; DA SILVA, T.L.T.; DE OLIVEIRA LIMA, L.C.; PIO, R.; QUEIROZ, F. 2014. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 156:362-368. https://doi.org/10.1016/j.foodchem.2014.01.125

ENVIRONMENTAL PROTECTION AGENCY-EPA. 2007. Method 3051A Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington: EPA.

FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS-FAO. 2012. Alcance de las pérdidas y el desperdicio de alimentos. In: Pérdidas y desperdicio de alimentos en el mundo - Alcance, causas y prevención. Roma. p.4-10.

FIGUEIRA, T.R.; LOPES, A.C.S.; MODENA, C.M. 2016. Promoters and barriers to fruit and vegetable consumption among Health Academy Program’s users. Rev. Nutr. 29(1):85-95. https://doi.org/10.1590/1678-98652016000100009

GASPARRINI, M.; FORBES-HERNANDEZ, T.Y.; GIAMPIERI, F.; AFRIN, S.; ALVAREZ-SUAREZ, J.M.; MAZZONI, L., MEZZETTI, B.; QUILES, j.l.; BATTINO, M. 2017. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food Chem. Toxicol. 102:1-10. https://doi.org/10.1016/j.fct.2017.01.018

GRZELAK-BŁASZCZYK, K.; KARLIŃSKA, E.; GRZĘDA, K.; RÓJ, E.; KOŁODZIEJCZYK, K. 2017. Defatted strawberry seeds as a source of phenolics, dietary fiber and minerals. LWT-Food Sci. Technol. 84:18-22. https://doi.org/10.1016/j.lwt.2017.05.014

HOLZWARTH, M.; KORHUMMEL, S.; CARLE, R.; KAMMERER, D.R. 2012. Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria × ananassa Duch.). Food Res. Int. 48(1):241-248. https://doi.org/10.1016/j.foodres.2012.04.004

HORVITZ, S.; CHANAGUANO, D.; AROZARENA, I. 2017. Andean blackberries (Rubus glaucus Benth) quality as affected by harvest maturity and storage conditions. Sci. Hort. 226:293-301. https://doi.org/10.1016/j.scienta.2017.09.002

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN -ICONTEC. 1997. NTC 4106 Frutas frescas. Mora de castilla. Especificaciones. Bogotá, D.C.

JOHNSON, M.H.; GONZALEZ DE MEJIA, E. 2016. Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic β-cells in vitro. J. Agric. Food Chem. 64(12):2569-2581. https://doi.org/10.1021/acs.jafc.6b00239

LIU, Y.; LIU, Y.; TAO, C.; LIU, M.; PAN, Y.; LV, Z. 2018. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. J. Food Measurement Characterization. 12(3):1744-1753. https://doi.org/10.1007/s11694-018-9789-1

MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL-MADR. 2018. Agronet Red de Información y Comunicación del Sector Agropecuario Colombiano. Disponible desde Internet en: http://www.agronet.gov.co/ (con acceso 29/05/2018).

OBÓN, J.M.; CASTELLAR, M.R.; ALACID, M.; FERNÁNDEZ-LÓPEZ, J.A. 2009. Production of a red–purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J. Food Eng. 90(4):471-479. https://doi.org/10.1016/j.jfoodeng.2008.07.013

PILJAC-ŽEGARAC, J.; ŠAMEC, D. 2011. Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res. Int. 44(1):345-350. https://doi.org/10.1016/j.foodres.2010.09.039

SAHIN, S.; SUMMU, S. 2006. Propiedades electromagnéticas. In: Propiedades físicas de los alimentos. Ankara. p.190-203.

TARAZONA‐DÍAZ, M.P.; VIEGAS, J.; MOLDAO‐MARTINS, M.; AGUAYO, E. 2010. Bioactive compounds from flesh and by‐product of fresh‐cut watermelon cultivars. J. Sci. Food Agric. 91(5):805-812. https://doi.org/10.1002/jsfa.4250

TARAZONA-DÍAZ, M.P.; AGUAYO, E. 2013. Assessment of by-products from fresh-cut products for reuse as bioactive compounds. Food Sci. Technol. Int. 19(5):439-446. https://doi.org/10.1177/1082013212455346

U.S. DEPARTMENT OF AGRICULTURE-USDA. 2018. Food Composition Databases Show Foods List. Disponible desde Internet: https://ndb.nal.usda.gov/ndb/

VALENTE, A.; ALBUQUERQUE, T.G.; SANCHES-SILVA, A.; COSTA, H.S. 2011. Ascorbic acid content in exotic fruits: A contribution to produce quality data for food composition databases. Food Res. Int. 44(7):2237-2242. https://doi.org/10.1016/j.foodres.2011.02.012

VAN DE VELDE, F.; GRACE, M.H.; ESPOSITO, D.; PIROVANI, M.É.; LILA, M.A. 2016. Quantitative comparison of phytochemical profile, antioxidant, and anti-inflammatory properties of blackberry fruits adapted to Argentina. J. Food Compost. Anal. 47:82-91. https://doi.org/10.1016/j.jfca.2016.01.008

VIGNONI, L.A.; CÉSARI, R.M.; FORTE, M.; MIRÁBILE, M.L. 2006. Determinación de índice de color en ajo picado. Inf. Tecnol. 17(6):63-67. https://doi.org/10.4067/S0718-07642006000600011

YANG, J.W.; CHOI, I.S. 2016. Comparison of the phenolic composition and antioxidant activity of korean black raspberry, Bokbunja, (Rubus coreanus Miquel) with those of six other berries. CyTA - J. Food. 15(1):110-117. https://doi.org/10.1080/19476337.2016.1219390

Citado por