Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad

Field blood preservation and DNA extraction from wild mammals: methods and key factors for biodiversity studies

Contenido principal del artículo

Resumen

Los estudios sobre salud pública y biodiversidad de mamíferos silvestres incluyen un componente genético. Para las muestras de sangre, se debe tener condiciones óptimas de colección, ya que pueden afectar la preservación y la extracción del ADN. Este estudio evaluó el uso de métodos de preservación de ADN líquido y seco y métodos de extracción de ADN comerciales y no comerciales, en muestras de sangre, recolectadas en campo. Para ello, se recogieron 264 muestras de sangre totales de mamíferos salvajes. Se preservó un primer grupo de muestras en clorhidrato de guanidina (GuHCl) y se extrajo el ADN, utilizando seis kits comerciales: Bioline, Norgen, Invitrogen, Promega y Qiagen, además de dos protocolos no comerciales: fenol-cloroformo isoamil alcohol (PC) y guanidina tiocianato (GIT). Otro grupo de muestras, se preservó en tarjetas Whatman® FTA® y se extrajo el ADN, con PC y GIT. Las extracciones con GIT y PC mostraron los valores y variaciones más altas en la concentración de ADN (ng/µL), mientras que el kit comercial mostró una baja variación. La preservación de la muestra en tarjetas Whatman® FTA® proporcionó una baja variación y cantidad de ADN extraído, en comparación con el uso de GuHCl. En cuanto a la calidad del ADN, los kits comerciales produjeron una mayor pureza (A260/280), mientras que los protocolos basados en GIT y PC proporcionaron resultados muy variables. Además, el uso de GIT y PC originó una mayor cantidad de ADN, pero de calidad variable. En general, la extracción basada en kits comerciales y la conservación Whatman® FTA® permitió obtener calidades y cantidades de ADN más estandarizadas. 

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Juan D. Carvajal-Agudelo, Universidad de Caldas

 

 

M. Paula Trujillo-Betancur, Universidad de Caldas

 

 

Daniela Velásquez-Guarín, Universidad de Caldas

 

 

Hector E. Ramírez-Chaves, Universidad de Caldas

 

 

Jorge E. Pérez-Cárdenas, Universidad de Caldas

 

 

Fredy A. Rivera-Páez, Universidad de Caldas

 

 

Referencias (VER)

AL-SHUHAIB, M.B.S.A. 2017. A universal, rapid, and inexpensive method for genomic DNA isolation from the whole blood of mammals and birds. J. Genetics. 96(1):171-176.

https://doi.org/10.1007/s12041-017-0750-6

ALBARIÑO, C.G.; ROMANOWSKI, V. 1994. Phenol extraction revisited: a rapid method for the isolation and preservation of human genomic DNA from whole blood. Molecular and Cellular Probes. 8(5):423-427.

https: //doi.org/10.1006/mcpr.1994.1060

AMARU, R.; PEÑALOZA, R.; MIGUEZ, H.; TORRES, G.; CUEVAS, H. 2008. UMSAgen, método para la extracción simultánea de RNA y DNA para diagnóstico molecular. Cuadernos Hospital de Clínicas. 53:38-43.

ASADZADEH, N.; JAVANMARD, A.; NASSIRI, M. 2010. Comparison of rapid DNA extraction techniques for conventional PCR-RFLP analysis from mammalian whole blood. J.Mol. Genet. 2(3):32-35.

https://doi.org/10.3923/jmolgene.2010.32.35

BORMAN, A.M.; FRASER, M.; LINTON, C.J.; PALMER, M.D.; JOHNSON, E.M. 2010. An improved protocol for the preparation of total genomic DNA from isolates of yeast and mould using Whatman FTA filter papers. Mycopathologia. 169(6):445-449.

https://doi.org/10.1007/s11046-010-9284-7

BURGIN, C.J.; WILSON, D.E.; MITTERMEIER, R.A.; RYLANDS, A.B.; LACHER, T.; SECHREST, W. 2020. Illustrated checklist of mammals of the World. Lynx edicions (Spain).

CAMACHO‐SANCHEZ, M.; BURRACO, P.; GOMEZ‐MESTRE, I.; LEONARD, J.A. 2013. Preservation of RNA and DNA from mammal samples under field conditions. Molecular Ecology Resources. 13(4):663-673.

https://doi.org/10.1111/1755-0998.12108

CHACON-CORTES, D.; GRIFFITHS, L.R. 2014. Methods for extracting genomic DNA from whole blood samples: current perspectives. J. Biorepository Science for Applied Medicine. 2:1-9.

https://doi.org/10.2147/BSAM.S46573

CHAKRABORTY, A.; SAKAI, M.; IWATSUKI, Y. 2006. Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques. J. Applied Ichthyology. 22(2):160-166.

http://doi.org/10.1111/j.1439-0426.2006.00718.x

CHO, Y.K.; LEE, J.G.; PARK, J.M.; LEE, B.S.; LEE, Y.; KO, C. 2007. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab on a Chip. 7(5):565-573.

https://doi.org/10.1039/b616115d

CHOI, E.H.; LEE, S.K.; IHM, C.; SOHN, Y.H. 2014. Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking. Osong Public Health and Research Perspectives. 5(6):351-357.

https://doi.org/10.1016/j.phrp.2014.09.005

DE VRIES, J.J.C.; CLAAS, E.C.J.; KROES, A.C.M.; VOSSEN, A.C.T.M. 2009. Evaluation of DNA extraction methods for dried blood spots in the diagnosis of congenital cytomegalovirus infection. J. Clinical Virology. 46:S37-S42.

https://doi.org/10.1016/j.jcv.2009.09.001

DEMEKE, T.; JENKINS, G.R. 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Analytical and Bioanalytical Chemistry. 396(6):1977-1990.

https://doi.org/10.1007/s00216-009-3150-9

DESQUESNES, M.; TRESSE, L. 1996. Evaluation of sensitivity of PCR for detecting DNA of Trypanosoma vivax with several methods of blood sample preparations. Revue d’elevage et de Medecine Veterinaire Des Pays Tropicaux. 49(4):322-327.

DI PIETRO, F.; ORTENZI, F.; TILIO, M.; CONCETTI, F.; NAPOLIONI, V. 2011. Genomic DNA extraction from whole blood stored from 15-to 30-years at− 20 C by rapid phenol–chloroform protocol: A useful tool for genetic epidemiology studies. Molecular and Cellular Probes. 25(1):44-48.

https://doi.org/10.1016/j.mcp.2010.10.003

DÍAZ, M.M.; SOLARI, S.; AGUIRRE, L.F.; AGUIAR, L.M.; BARQUEZ, R.M. 2016. Clave de Identificación de los Murciélagos de Sudamérica – Chave de Identificação dos Morcegos da América do Sul. Programa de Conservación de los Murciélagos de Argentina. Publicación Especial PCMA Nro 2. Editorial Magna Publicaciones, 160p.

DOVE, C.J.; DAHLAN, N.F.; HEACKER, M.A.; WHATTON, J.F. 2011. Using Whatman FTA® cards to collect DNA for bird-strike identifications. Human-Wildlife Interactions. 5(2):218-223.

https://doi.org/10.26077/csen-dy04

ESSER, K.H.; MARX, W.H.; LISOWSKY, T. 2006. MaxXbond: first regeneration system for DNA binding silica matrices. Nature Methods. 3(1):68.

https://doi.org/10.1038/nmeth845

FICETOLA, G.F.; MIAUD, C.; POMPANON, F.; TABERLET, P. 2008. Species detection using environmental DNA from water samples. Biology Letters. 4(4):423-425.

https://doi.org/10.1098/rsbl.2008.0118

GARDNER, A.L. 2008. Mammals of South America, volume 1: marsupials, xenarthrans, shrews, and bats (Vol. 2). University of Chicago Press (United States).

GILBERT, M.T.P.; MOORE, W.; MELCHIOR, L.; WOROBEY, M. 2007. DNA extraction from dry museum beetles without conferring external morphological damage. PloS One. 2(3):e272.

https://doi.org/10.1371/journal.pone.0000272

HAWKEY, C.M. 2017. Comparative mammalian haematology: cellular components and blood coagulation of captive wild animals. William Heinemann Medical Books. London, UK. 310p.

https://doi.org/10.1016/C2013-0-06344-X

HENRY, P.; RUSSELLO, M.A. 2011. Obtaining high-quality DNA from elusive small mammals using low-tech hair snares. European J. Wildlife Research. 57(3):429-435.

https://doi.org/10.1007/s10344-010-0449-y

HOFREITER, M. 2012. Nondestructive DNA extraction from museum specimens. Ancient DNA Springer. p.93-100.

https://doi.org/10.1007/978-1-61779-516-9_13

IBRAHIM, N.A.; NASSAR, S.A.; ABD EL-GAWAD, A.M.; OMAR, M.F. 2018. Comparing the efficiency in DNA extraction between organic phenol and magnetic beads methods. Forensic Med. Toxicol. 16:10-17.

https://doi.org/10.21608/zjfm.2018.2419.1007

KARTHIKEYAN, K.; SARANYA, R.; BHARATH, R.; VIDYA, R.; ITAMI, T.; SUDHAKARAN, R. 2020. A simple filter paper-based method for transporting and storing Enterocytozoon hepatopenaei DNA from infected Litopenaeus vannamei tissues. J. Invertebrate Pathology. 169:107305.

https://doi.org/10.1016/j.jip.2019.107305

KRAVCHENKO, A.V.; CHETVERINA, E.V.; CHETVERIN, A.B. 2006. Preservation of nucleic acid integrity in guanidine thiocyanate lysates of whole blood. Russian J. Bioorganic Chemistry. 32(6):547-551.

https://doi.org/10.1134/S1068162006060070

MA, D.; ZHUO, X.Y.; BU, J.; XIANG, P.; SHEN, B.H. 2007. Research of on the stability of ethanol in preservation of ethanol in blood. Fa Yi Xue Za Zhi. 23(2):117-119.

MALFERRARI, G.; MONFERINI, E.; DEBLASIO, P.; DIAFERIA, G.; SALTINI, G.; DEL VECCHIO, E.; ROSSI-BERNARDI, L.; BIUNNO, I. 2002. High-quality genomic DNA from human whole blood and mononuclear cells. Biotechniques. 33(6):1228-1230.

https://doi.org/10.2144/02336bm09

MAYTA, H.; ROMERO, Y.K.; PANDO, A.; VERASTEGUI, M.; TINAJEROS, F.; BOZO, R.; HENDERSON-FROST, J.; COLANZI, R.; FLORES, J.; LERNER, R. 2019. Improved DNA extraction technique from clot for the diagnosis of Chagas disease. PLoS Neglected Tropical Diseases. 13(1):e0007024.

https://doi.org/10.1371/journal.pntd.0007024

METWALLY, L.; FAIRLEY, D.J.; COYLE, P.V.; HAY, R.J.; HEDDERWICK, S.; MCCLOSKEY, B.; O’NEILL, H.J.; WEBB, C.H.; ELBAZ, W.; MCMULLAN, R. 2008. Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR. J. Medical Microbiology. 57(3):296-303.

https://doi.org/10.1099/jmm.0.47617-0

MINAMOTO, T.; NAKA, T.; MOJI, K.; MARUYAMA, A. 2016. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction. Limnology. 17(1):23-32.

https://doi.org/10.1007/s10201-015-0457-4

MTAMBO, J.; VAN BORTEL, W.; MADDER, M.; ROELANTS, P.; BACKELJAU, T. 2006. Comparison of preservation methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for reliable DNA amplification by PCR. Experimental & Applied Acarology. 38(2-3):189-199.

https://doi.org/10.1007/s10493-006-0004-4

NAKAGAWA, M.; HYODO, F.; NAKASHIZUKA, T. 2007. Effect of forest use on trophic levels of small mammals: an analysis using stable isotopes. Canadian J. Zoology. 85(4):472-478.

https://doi.org/10.1139/Z07-026

NOWAK, R.M.; WALKER, E.P. 1999. Walker’s Mammals of the World (Vol. 1). JHU press (United States).

PATTON, J.L.; PARDIÑAS, U.F.J.; D’ELÍA, G. 2015. Mammals of South America, volume 2: rodents (Vol. 2). University of Chicago Press (United States).

PSIFIDI, A.; DOVAS, C.I.; BRAMIS, G.; LAZOU, T.; RUSSEL, C.L.; ARSENOS, G.; BANOS, G. 2015. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples. PloS One. 10(1).

https://doi.org/10.1371/journal.pone.0115960

RAHIKAINEN, A.L.; PALO, J.U.; DE LEEUW, W.; BUDOWLE, B.; SAJANTILA, A. 2016. DNA quality and quantity from up to 16 years old post-mortem blood stored on FTA cards. Forensic Science Internal. 261:148-153.

https://doi.org/10.1016/j.forsciint.2016.02.014

REY FRAILE, I.R. 2013. Museos, colecciones científicas y ADN. Memorias de La Real Sociedad Española de Historia Natural. 11:53-68.

RODRIGUES, M.S.; LIMA, L.; DAS CHAGAS XAVIER, S.C.; HERRERA, H.M.; ROCHA, F.L.; ROQUE, A.L.R.; TEIXEIRA, M.M.G.; JANSEN, A.M. 2019. Uncovering Trypanosoma spp. diversity of wild mammals by the use of DNA from blood clots. International Journal for Parasitology: Parasites and Wildlife. 8:171-181.

https://doi.org/10.1016/j.ijppaw.2019.02.004

ROHLAND, N.; HOFREITER, M. 2007. Comparison and optimization of ancient DNA extraction. Biotechniques. 42(3):343-352.

https://doi.org/10.2144/000112383

SALGADO, A.; VIEIRALVES, T.; LAMARÃO, F.R.M.; ASSUMPÇÃO, L.L.M.; GOMES, D.; JASCONE, L.; VALADÃO, A.L.; ALBANO, R.M.; LÔBO-HAJDU, G. 2007. Field preservation and optimization of a DNA extraction method for Porifera. In: Custódio, M.R.; Lôbo-Hajdu, G.; Hajdu, E.; Muricy, G. (eds). Porifera Research. Biodiversity, Innovation and Sustainability. Livros de Museu Nacional 28, Rio de Janeiro. Porifera Research: Biodiversity, Innovation and Sustainability. p.555-560.

SANT’ANNA, M.R.V.; JONES, N.G.; HINDLEY, J.A.; MENDES-SOUSA, A.F.; DILLON, R.J.; CAVALCANTE, R.R.; ALEXANDER, B.; BATES, P.A. 2008. Blood meal identification and parasite detection in laboratory-fed and field-captured Lutzomyia longipalpis by PCR using FTA databasing paper. Acta Tropica. 107(3):230-237.

https://doi.org/10.1016/j.actatropica.2008.06.003

SCHIJMAN, A.G.; BISIO, M.; ORELLANA, L.; SUED, M.; DUFFY, T.; JARAMILLO, A.M.M.; CURA, C.; AUTER, F.; VERON, V.; QVARNSTROM, Y. 2011. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Neglected Tropical Diseases. 5(1).

https://doi.org/10.1371/journal.pntd.0000931

TAN, S.C.; YIAP, B.C. 2009. DNA, RNA, and protein extraction: the past and the present. BioMed Research International.

https://doi.org/10.1155/2013/628968

TANG, S.; ZHANG, H.; LEE, H.K. 2016. Advances in sample extraction. Analytical Chemistry. 88(1):228-249.

https://doi.org/10.1021/acs.analchem.5b04040

TANG, X.W.; LIAO, C.; LI, Y.; XIE, X.M.; HUANG, Y.L. 2006. Modified guanidine hydrochloride method for DNA extraction from cord blood used in HLA genotyping. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 14(2):363-365.

WILLERSLEV, E.; HANSEN, A.J.; POINAR, H.N. 2004. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends in Ecology & Evolution. 19(3):141-147.

https://doi.org/10.1016/j.tree.2003.11.010

WILLIAMS, E.S.; BARKER, I.K. 2008. Infectious diseases of wild mammals. John Wiley & Sons (Iowa, United States). 560p.

https://doi.org/10.1002/9780470344880

Citado por

Artículos más leídos del mismo autor/a

Artículos similares

<< < 61 62 63 64 65 66 

También puede {advancedSearchLink} para este artículo.

Datos de la Publicación

Métrica
Éste artículo
Otros artículos
Pares Evaluadores 
2
2.4

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Éste artículo
Otros artículos
Datos de Investigación 
No
16%
Financiación externa 
No
32%
Conflicto de Intereses 
N/D
11%
Métrica
Para esta revista
Otras Revistas
Tasa de aceptación 
16%
33%
Tiempo publicación (días) 
197
145
Editor y consejo editorial:
Perfiles
Institución responsable 
Universidad de Ciencias Aplicadas UDCA
Editora: 
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A