Mejoramiento de un método no comercial para la extracción de ADN de moscas de interés médico-legal
Improvement of a non-commercial method for DNA extraction from flies of medico-legal interest
Contenido principal del artículo
Resumen
La obtención de ADN de moscas de interés médico-legal es de relevancia para una variedad de aplicaciones. Aunque existen métodos de extracción comerciales de ADN, su uso rutinario es limitado, en algunos escenarios. En este contexto, el uso de métodos no comerciales constituye una alternativa; sin embargo, su optimización es clave para mejorar el flujo de trabajo y los resultados. Este trabajo evaluó el impacto de variaciones a un método de precipitación salina sobre la concentración y la pureza del ADN recuperado. No se encontraron diferencias significativas en la concentración de ADN extraído entre los diferentes tiempos de incubación, probados durante la fase de extracción, mientras que el incremento en el volumen de etanol absoluto, en la fase de precipitación de ADN, mejoró significativamente la concentración de ADN obtenido. Las modificaciones propuestas reducen el tiempo de ejecución y la concentración de ADN obtenido comparado con el protocolo original.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
AMMAZZALORSO, A.D.; ZOLNIK, C.P.; DANIELS, T.J.; KOLOKOTRONIS, S.-O. 2015. To beat or not to beat a tick: comparison of DNA extraction methods for ticks (Ixodes scapularis). Peer J. 3:e1147.
https://doi.org/10.7717/peerj.1147 DOI: https://doi.org/10.7717/peerj.1147
ARISTIZÁBAL-BOTERO, Á.; GROOT, H.; CAMACHO, G.P.; REALPE, E.; PAREDES, M. 2016. Análisis de las secuencias citocromo oxidasa I y espaciadores ribosomales transcritos internos (ITS1 y 2 y 5.8S) para la identificación de especies de interés forense. Revista Entomología Mexicana. 3:695-706.
AUSUBEL, F.M.; BRENT, R.; KINGSTON, R.E.; MOORE, D.D.; SEIDMAN, J.G.; SMITH, J.A.; STRUHL, K. 2003. Current protocols in molecular biology. Ed. John Wiley & Sons, Inc. (Estados Unidos). 4648p.
BENÍTEZ, H.A. 2013. Sexual dimorphism. In: Moriyama, H. (ed.). Sexual Dimorphism. IntechOpen (Croatia). p.35-50.
BOESENBERG-SMITH, K.A.; PESSARAKLI, M.M.; WOLK, D.M. 2012. Assessment of DNA Yield and Purity: An Overlooked Detail of PCR Troubleshooting. Clinical Microbiology Newsletter. 34(1):3-6.
https://doi.org/10.1016/j.clinmicnews.2011.12.002 DOI: https://doi.org/10.1016/j.clinmicnews.2011.12.002
BUENAVENTURA, E.; PAPE, T. 2013. Revision of the New World genus Peckia Robineau-Desvoidy (Diptera: Sarcophagidae). Zootaxa. 3622(1):1-87.
https://doi.org/10.11646/zootaxa.3622.1.1 DOI: https://doi.org/10.11646/zootaxa.3622.1.1
BYRD, J.H.; TOMBERLIN, J.K. 2020. Forensic entomology: The utility of arthropods in legal investigations. Third edition. CRC Press. 620p. DOI: https://doi.org/10.4324/9781351163767
CADAVID, I.C. 2018. Extracción de ADN a partir de insectos con buffer de macerado. En: Gómez P., L.M.; Gómez G., G.F. (eds). Del campo al laboratorio: Integración de procedimientos para el estudio de moscas. Sello Editorial Publicar-T (Medellin, Colombia). p.87-91.
CARVALHO, C.J.B.; MELLO-PATIU, C.A. 2008. Key to the adults of the most common forensic species of Diptera in South America. Revista Brasileira de Entomologia. 52(3):390-406.
https://doi.org/10.1590/S0085-56262008000300012 DOI: https://doi.org/10.1590/S0085-56262008000300012
COLLINS, F.H.; MENDEZ, M.A.; RASMUSSEN, M.O.; MEHAFFEY, P.C.; BESANSKY, N.J.; FINNERTY, V. 1987. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. The American Journal of Tropical Medicine and Hygiene. 37(1):37-41.
https://doi.org/10.4269/ajtmh.1987.37.37 DOI: https://doi.org/10.4269/ajtmh.1987.37.37
CORTÉS-SUAREZ, L.; DURANGO, Y.S.; GÓMEZ, G.F. 2021. Dimorfismo sexual en la geometría alar de Musca domestica (Diptera: Muscidae) de Colombia. Revista de la Sociedad Entomológica Argentina. 80(1):81-88.
https://doi.org/10.25085/rsea.800109 DOI: https://doi.org/10.25085/rsea.800109
DE QUEIROZ, K. 2007. Species concepts and species delimitation. Systematic Biology. 56(6):879-886.
https://doi.org/10.1080/10635150701701083 DOI: https://doi.org/10.1080/10635150701701083
DURANGO, Y.; RAMÍREZ-MORA, M. 2019. Fannia Robineau-Desvoidy (Diptera: Fanniidae) of Colombia: New species, identification key and updated checklist. Zootaxa. 4604(2):301-325.
https://doi.org/10.11646/zootaxa.4604.2.4 DOI: https://doi.org/10.11646/zootaxa.4604.2.4
EL-HELALY, M.; BALKHY, H.H.; VALLENIUS, L. 2017. Carpal tunnel syndrome among laboratory technicians in relation to personal and ergonomic factors at work. Journal of occupational health. 59(6):513-520.
https://doi.org/10.1539/joh.16-0279-OA DOI: https://doi.org/10.1539/joh.16-0279-OA
GÓMEZ, G.F.; BICKERSMITH, S.A.; GONZÁLEZ, R.; CONN, J.E.; CORREA, M.M. 2015. Molecular taxonomy provides new insights into Anopheles species of the neotropical Arribalzagia series. PLoS One. 10(3):1-17.
https://doi.org/10.1371/journal.pone.0119488 DOI: https://doi.org/10.1371/journal.pone.0119488
GREEN, M.R.; SAMBROOK, J. 2016. Precipitation of DNA with ethanol. Cold Spring Harbor Protocols. 2016(12):1116-1120.
https://doi.org/10.1101/pdb.prot093377 DOI: https://doi.org/10.1101/pdb.prot093377
GRISALES, D.; DE CARVALHO, C.J.B. 2019. Highland biodiversity of Fanniidae (Insecta, Diptera): Fourteen new species from the Andes and Central America. Zootaxa. 4551(3):330-360.
https://doi.org/10.11646/zootaxa.4551.3.4 DOI: https://doi.org/10.11646/zootaxa.4551.3.4
GUO, Y.D.; CAI, J.F.; MENG, F.M.; CHANG, Y.F.; GU, Y.; LAN, L.M.; LIANG, L.; WEN, J.F. 2012. Identification of forensically important flesh flies based on a shorter fragment of the cytochrome oxidase subunit I gene in China. Medical and Veterinary Entomology. 26(3):307-313.
https://doi.org/10.1111/j.1365-2915.2011.01003.x DOI: https://doi.org/10.1111/j.1365-2915.2011.01003.x
HAMMER, Ø.; HARPER, D.A.T.; RYAN, P.D. 2001. Past: Paleontological statistics software package for education and data analysis. Paleontologia Electronica. 4(1):1-9.
KUHN, R.; BÖLLMANN, J.; KRAHL, K.; BRYANT, I.M.; MARTIENSSEN, M. 2017. Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples. Journal of Microbiological Methods. 143:78-86.
https://doi.org/10.1016/j.mimet.2017.10.007 DOI: https://doi.org/10.1016/j.mimet.2017.10.007
NAKANO, A.; HONDA, J. 2015. Use of DNA sequences to identify forensically important fly species and their distribution in the coastal region of Central California. Forensic Science International. 253:1-13.
https://doi.org/10.1016/j.forsciint.2015.05.001 DOI: https://doi.org/10.1016/j.forsciint.2015.05.001
NIU, C.; KEBEDE, H.; AULD, D.L.; WOODWARD, J.E.; BUROW, G.; WRIGHT, R.J. 2008. A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. African Journal Biotechnology. 7(16):2818-2822.
NUÑEZ RODRÍGUEZ, J.; LIRIA, J. 2017. Sexual wing shape dimorphism in Piophila casei (Linnaeus, 1758 Diptera: Piophilidae). Indian Journal of Forensic Medicine and Toxicology. 11(2):217-221.
https://doi.org/10.5958/0973-9130.2017.00100.1 DOI: https://doi.org/10.5958/0973-9130.2017.00100.1
PACKER, L.; GIBBS, J.; SHEFFIELD, C.; HANNER, R. 2009. DNA barcoding and the mediocrity of morphology. Molecular Ecology Resourves. 9(Suppl. 1):42-50.
https://doi.org/10.1111/j.1755-0998.2009.02631.x DOI: https://doi.org/10.1111/j.1755-0998.2009.02631.x
PANIGRAHY, N.; PRIYADARSHINI, A.; SAHOO, M.M.; VERMA, A.K.; DAVEREY, A.; SAHOO, N.K. 2022. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation. 27:102423.
https://doi.org/10.1016/j.eti.2022.102423 DOI: https://doi.org/10.1016/j.eti.2022.102423
PASETO, M.L.; DE FARIA, L.S.; MENDES, J.; LINHARES, A.X. 2019. Diversity of Sarcophagidae (Insecta, Diptera) associated with decomposing carcasses in a rural area of the State of Minas Gerais, Brazil. EntomoBrasilis. 12(3):118-125.
https://doi.org/10.12741/ebrasilis.v12i3.842 DOI: https://doi.org/10.12741/ebrasilis.v12i3.842
PRENDINI, L.; HANNER, R.; DESALLE, R.O.B. 2002. Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. In: DeSalle, R.; Giribet, G.; Wheeler, W. (eds). Techniques in Molecular Systematics and Evolution. Springer. p.176-248. DOI: https://doi.org/10.1007/978-3-0348-8125-8_11
PSIFIDI, A.; DOVAS, C.I.; BRAMIS, G.; LAZOU, T.; RUSSEL, C.L.; ARSENOS, G.; BANOS, G. 2015. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples. PLoS ONE. 10(1):e0115960.
https://doi.org/10.1371/journal.pone.0115960 DOI: https://doi.org/10.1371/journal.pone.0115960
RATNASINGHAM, S.; HEBERT, P.D.N. 2007. Bold: The barcode of life data system. Molecular Ecology Notes. 7(3):355-364.
https://doi.org/10.1111/j.1471-8286.2007.01678.x DOI: https://doi.org/10.1111/j.1471-8286.2007.01678.x
SAAVEDRA-MATIZ, C.A.; ISABELLE, J.T.; BISKI, C.K.; DUVA, S.J.; SWEENEY, M.L.; PARKER, A.L.; YOUNG, A.J.; DIANTONIO, L.L.; KREIN, L.M.; NICHOLS, M.J.; CAGGANA, M. 2013. Cost-effective and scalable DNA extraction method from dried blood spots. Clinical Chemistry. 59(7):1045-1051.
https://doi.org/10.1373/clinchem.2012.198945 DOI: https://doi.org/10.1373/clinchem.2012.198945
STORK, N.E. 2018. How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology. 63:31-45.
https://doi.org/10.1146/annurev-ento-020117-043348 DOI: https://doi.org/10.1146/annurev-ento-020117-043348
XIN, Z.; CHEN, J. 2012. A high throughput DNA extraction method with high yield and quality. Plant Methods. 8:26.
https://doi.org/10.1186/1746-4811-8-26 DOI: https://doi.org/10.1186/1746-4811-8-26
YUAN J.; LI, M.; LIN, S. 2015. An improved DNA extraction method for efficient and quantitative recovery of phytoplankton diversity in natural assemblages. PLoS One. 10(7):e0133060.
https://doi.org/10.1371/journal.pone.0133060 DOI: https://doi.org/10.1371/journal.pone.0133060