Propiedades físicas de un suelo sometido a la aplicación de diferentes cantidades de materia orgánica de escarabajo

Physical properties of soil submitted to the implementation of different amounts of beetle organic matter

Contenido principal del artículo

Juan Pablo Fernández-Rodríguez
Javier Giovanni Álvarez-Herrera
Marilcen Jaime-Guerrero

Resumen

Las áreas con suelos degradados en el mundo son cada vez mayores y ponen en peligro la seguridad alimentaria, los ecosistemas y la sostenibilidad; no obstante, una herramienta para controlar esta pérdida de suelo es la adición de materia orgánica (MO). Existen diversas fuentes de materia orgánica, una de ellas, proviene del abono orgánico de escarabajo, pero se desconoce su efecto sobre las propiedades físicas del suelo. Este trabajo evaluó el impacto de la aplicación de diferentes cantidades de materia orgánica de escarabajo en las propiedades físicas de un suelo. Se utilizó un diseño experimental completamente aleatorizado con cinco tratamientos correspondientes a diferentes dosis de materia orgánica de escarabajo (0, 4, 8, 12 y 16 t ha-1), aplicada al suelo. La materia orgánica se aplicó y se dejó actuar durante 70 días; al cabo de este tiempo se midieron las propiedades físicas del suelo. Los resultados indicaron que la materia orgánica de escarabajo afectó significativamente la densidad aparente, el índice de estabilidad de agregados (IEA), la resistencia a la penetración y la humedad volumétrica. Los mayores valores de IEA se obtuvieron con la aplicación de 4 t ha-1 de MO. La adición de 16 t ha-1 de MO disminuyó, tanto la densidad aparente como la resistencia a la penetración y mejoró la calidad del suelo en parámetros, como el índice de plasticidad y la humedad volumétrica. La materia orgánica de escarabajo se convierte en una alternativa importante para mejorar las propiedades físicas del suelo.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

ATHIRA, M.; JAGADEESWARAN, R.; KUMARAPERUMAL, R. 2019. Influence of soil organic matter on bulk density in Coimbatore soils. International Journal of Chemical Studies. 7(3):3520-3523.

BLANCO-CANQUI, H. 2024. Do cover crop mixtures improve soil physical health more than monocultures? Plant and Soil. 495(1):99-112. https://doi.org/10.1007/s11104-023-06086-4 DOI: https://doi.org/10.1007/s11104-023-06086-4

BORRELLI, P.; ROBINSON, D.A.; PANAGOS, P.; LUGATO, E.; YANG, J.E.; ALEWELL, C.; WUEPPER, D.; MONTANARELLA, L.; BALLABIO, C. 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences. 117(36):21994-22001. https://doi.org/10.1073/pnas.2001403117 DOI: https://doi.org/10.1073/pnas.2001403117

CABUGAO, K.G.M.; GUSHGARI-DOYLE, S.; CHACON, S.S.; WU, X.; BHATTACHARYYA, A.; BOUSKILL, N.; CHAKRABORTY, R. 2022. Characterizing natural organic matter transformations by microbial communities in terrestrial subsurface ecosystems: a critical review of analytical techniques and challenges. Frontiers in Microbiology. 13:864895. https://doi.org/10.3389/fmicb.2022.864895 DOI: https://doi.org/10.3389/fmicb.2022.864895

ĆIRIĆ, V.; MANOJLOVIC, M.; NESIC, L.; BELIC, M. 2012. Soil dry aggregate size distribution: effects of soil type and land use. Journal of Soil Science and Plant Nutrition. 12(4):689-703. https://dx.doi.org/10.4067/S0718-95162012005000025 DOI: https://doi.org/10.4067/S0718-95162012005000025

EVEN, R.J.; COTRUFO, M.F. 2024. The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation. Geoderma. 442:116760. https://doi.org/10.1016/j.geoderma.2023.116760 DOI: https://doi.org/10.1016/j.geoderma.2023.116760

FORERO, F.E.; FERNÁNDEZ, J.P; ALVAREZ-HERRERA, J.G. 2010. Efecto de diferentes dosis de cachaza en el cultivo de maíz (Zea mays). Revista U.D.C.A Actualidad & Divulgación Científica. 13(1):77-86. https://doi.org/10.31910/rudca.v13.n1.2010.711 DOI: https://doi.org/10.31910/rudca.v13.n1.2010.711

GERKE, J. 2022. The central role of soil organic matter in soil fertility and carbon storage. Soil Systems. 6(2):33. https://doi.org/10.3390/soilsystems6020033 DOI: https://doi.org/10.3390/soilsystems6020033

GUI, Y.; ZHANG, Q.; QIN, X.; WANG, J. 2021. Influence of organic matter content on engineering properties of clays. Advances in Civil Engineering. 2021:6654121. https://doi.org/10.1155/2021/6654121 DOI: https://doi.org/10.1155/2021/6654121

HALDER, M.; LIU, S.; ZHANG, Z.B.; GUO, Z.C.; PENG, X.H. 2021. Effects of residue stoichiometric, biochemical and C functional features on soil aggregation during decomposition of eleven organic residues. Catena. 202:105288. https://doi.org/10.1016/j.catena.2021.105288 DOI: https://doi.org/10.1016/j.catena.2021.105288

HALDER, M.; LIU, S.; ZHANG, Z.B.; GUO, Z.C.; PENG, X.H. 2022. Effects of organic matter characteristics on soil aggregate turnover using rare earth oxides as tracers in a red clay soil. Geoderma. 421:115908. https://doi.org/10.1016/j.geoderma.2022.115908 DOI: https://doi.org/10.1016/j.geoderma.2022.115908

HERRERA, A.M.; FISCHER, G.; CHACÓN, M.I. 2012. Agronomical evaluation of cape gooseberries (Physalis peruviana L.) from central and north-eastern Colombia. Agronomía Colombiana. 30(1):15-24.

IHESHIULO, E.M.A.; LARNEY, F.J.; HERNÁNDEZ-RAMIREZ, G.; LUCE, M.S.; CHAU, H.W.; LIU, K. 2024. Soil organic matter and aggregate stability dynamics under major no-till crop rotations on the Canadian prairies. Geoderma. 442:116777. https://doi.org/10.1016/j.geoderma.2024.116777 DOI: https://doi.org/10.1016/j.geoderma.2024.116777

JIA, Z.; WENG, B.; YAN, D.; PENG, H.; DONG, Z. 2024. The effects of different factors on soil water infiltration properties in High Mountain Asia: A meta-analysis. Catena. 234:107583. https://doi.org/10.1016/j.catena.2023.107583 DOI: https://doi.org/10.1016/j.catena.2023.107583

KEMPER, W.D.; ROSENAU, R.C. 1986. Aggregate stability and size distribution. En: Klute, A. (Ed.), Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. Agronomy Monograph No. 9. American Society of Agronomy-Soil Science Society of America. Madison, WI. p.425-442. https://eprints.nwisrl.ars.usda.gov/id/eprint/732/3/585.pdf DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c17

KOPITTKE, P.M.; MENZIES, N.W.; WANG, P.; MCKENNA, B.A.; LOMBI, E. 2019. Soil and the intensification of agriculture for global food security. Environment International. 132:105078. https://doi.org/10.1016/j.envint.2019.105078 DOI: https://doi.org/10.1016/j.envint.2019.105078

KUZYAKOV, Y.; GUNINA, A.; ZAMANIAN, K.; TIAN, J.; LUO, Y.; XU, X.; YUDINA, A.; APONTE, H.; ALHARBI, H.; OVSEPYAN, L.; KURGANOVA, I.; GE, T.; GUILLAUME, T. 2020. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Frontiers of Agricultural Science and Engineering. 7(3):282-288. https://doi.org/10.15302/J-FASE-2020338 DOI: https://doi.org/10.15302/J-FASE-2020338

LI, S.; WANG, B.; ZHANG, X.; WANG, H.; Yi, Y.; HUANG, X.; GAO, X.; ZHU, P.; HAN, W. 2023. Soil particle aggregation and aggregate stability associated with ion specificity and organic matter content. Geoderma. 429:116285. https://doi.org/10.1016/j.geoderma.2022.116285 DOI: https://doi.org/10.1016/j.geoderma.2022.116285

LIU, S.; GUO, Z.C.; HALDER, M.; ZHANG, H.X.; SIX, J.; PENG, X.H. 2021. Impacts of residue quality and soil texture on soil aggregation pathways by using rare earth oxides as tracers. Geoderma. 399:115114. https://doi.org/10.1016/j.geoderma.2021.115114 DOI: https://doi.org/10.1016/j.geoderma.2021.115114

MALONE, Z.; BERHE, A.A.; RYALS, R. 2023. Impacts of organic matter amendments on urban soil carbon and soil quality: A meta-analysis. Journal of Cleaner Production. 419:138148. https://doi.org/10.1016/j.jclepro.2023.138148 DOI: https://doi.org/10.1016/j.jclepro.2023.138148

OLIVEIRA, F.C.C.; FERREIRA, G.W.D.; SOUZA, J.L.S.; VIEIRA, M.E.O.; PEDROTTI, A. 2019. Soil physical properties and soil organic carbon content in northeast Brazil: long-term tillage systems effects. Scientia Agricola. 77(4):e20180166. https://doi.org/10.1590/1678-992X-2018-0166 DOI: https://doi.org/10.1590/1678-992x-2018-0166

REICHERT, J.M.; MENTGES, M.I.; RODRIGUES, M.F.; CAVALLI, J.P.; AWE, G.O.; MENTGES, L.R. 2018. Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena. 165:345-357. https://doi.org/10.1016/j.catena.2018.02.014 DOI: https://doi.org/10.1016/j.catena.2018.02.014

SANCHES SUZUKI, L.E.A.; REINERT, D.J.; TORRES FENNER, P.; SECCO, D.; REICHERT, J.M. 2022. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. Journal of South American Earth Sciences. 120:104113. https://doi.org/10.1016/j.jsames.2022.104113 DOI: https://doi.org/10.1016/j.jsames.2022.104113

SHAHEB, M.R.; VENKATESH, R.; SHEARER, S.A. 2021. A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering. 46:417-439. https://doi.org/10.1007/s42853-021-00117-7 DOI: https://doi.org/10.1007/s42853-021-00117-7

SONSRI, K.; WATANABE, A. 2023. Insights into the formation and stability of soil aggregates in relation to the structural properties of dissolved organic matter from various organic amendments. Soil and Tillage Research. 232:105774. https://doi.org/10.1016/j.still.2023.105774 DOI: https://doi.org/10.1016/j.still.2023.105774

TIMSINA, J. 2018. Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy. 8(10):214. https://doi.org/10.3390/agronomy8100214 DOI: https://doi.org/10.3390/agronomy8100214

UNITED NATIONS CONVENTION TO CAMBAT DESERTIFICATION, UNCCD. 2022. Global land outlook. Second edition. Land Restoration for Recovery and Resilience. United Nations Convention to Combat Desertification. 176p. Disponible desde Internet en: https://www.unccd.int/sites/default/files/2022-04/UNCCD_GLO2_low-res_2.pdf

VISCONTI-MORENO, E.F.; VALENZUELA-BALCÁZAR, I.G. 2019. Impact of soil use on aggregate stability and its relationship with soil organic carbon at two different altitudes in the Colombian Andes. Agronomía Colombiana. 37(3):263-273. https://doi.org/10.15446/agron.colomb.v37n3.77601 DOI: https://doi.org/10.15446/agron.colomb.v37n3.77601

WANG, L.; LU, P.; FENG, S.; HAMEL, C.; SUN, D.; SIDDIQUE, K.H.; GAN, G.Y. 2024. Strategies to improve soil health by optimizing the plant–soil–microbe–anthropogenic activity nexus. Agriculture, Ecosystems & Environment. 359:108750. https://doi.org/10.1016/j.agee.2023.108750 DOI: https://doi.org/10.1016/j.agee.2023.108750

YONG, L.L.; NAMAL JAYASANKA PERERA, S.VA. D.; SYAMSIR, A.; EMMANUEL, E.; PAUL, S.C.; ANGGRAINI, V. 2019. Stabilization of a residual soil using calcium and magnesium hydroxide nanoparticles: A quick precipitation method. Applied Sciences. 9(20):4325. https://doi.org/10.3390/app9204325 DOI: https://doi.org/10.3390/app9204325

Citado por

Artículos más leídos del mismo autor/a