Tratamiento bio-oxidativo de percolados provenientes de la fracción orgánica de residuos sólidos urbanos: un seguimiento espectroscópico

Bio-oxidative treatment of percolates from the organic fraction of municipal solid waste: A spectroscopic monitoring

Contenido principal del artículo

Sergio Mauricio Betancur-Hincapié
Carlos Alberto Peláez-Jaramillo

Resumen

La gestión de los residuos sólidos urbanos está estrechamente relacionada con el aumento de la población, el desarrollo y el cambio climático. Estos residuos están compuestos por más de un 50 % de materia orgánica y un alto contenido en humedad, lo que conlleva la generación de lixiviados con altas concentraciones de materia orgánica disuelta (MOD) en descomposición y metales pesados, entre otros contaminantes. Esta amenaza a los ecosistemas naturales demanda esfuerzos para encontrar estrategias para su manejo y estabilización. En esta investigación se estudió el impacto de un tratamiento biológico aeróbico sobre la estabilización de la materia orgánica presente en los lixiviados, obtenidos a partir de la fracción orgánica de residuos sólidos separados en origen, como potencial estrategia para la producción de precursores de sustancias pre-húmicas con interés agronómico. Se realizó tratamiento bio-oxidativo con burbujeo de aire, para estabilizar la MOD y se hizo seguimiento cinético de las transformaciones estructurales, a nivel molecular, empleando espectroscopía infrarroja, resonancia magnética nuclear de hidrógeno y carbono y espectroscopía ultravioleta visible. Se identificó que en la MOD, inicialmente, ocurrieron procesos de mineralización de sustancias simples, como aminas y alcoholes y, en tiempos superiores a los 15 días de tratamiento, se formaron compuestos conjugados y estructuras aromáticas precursoras de sustancias húmicas. Los resultados mostraron que el tratamiento empleado puede ser una alternativa para estabilizar los lixiviados provenientes de la fracción orgánica de los residuos sólidos urbanos, obteniendo, a su vez, productos de valor agregado, desde un punto de vista agronómico.

Descargas

Los datos de descargas todavía no están disponibles.

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
1
2.4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
No
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
17%
33%
Días para la publicación 
341
145

Indexado en

Editor y equipo editorial
Perfiles
Editorial 
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A

Detalles del artículo

Referencias (VER)

ALAM, P.; KHAN, A.H.; ISLAM, R.; SABI, E.; KHAN, N.A.; ZARGAR, T.I. 2024. Identification of prevalent leachate percolation of municipal solid waste landfill: a case study in India. Scientific Reports. 14(1):8910. https://doi.org/10.1038/s41598-024-58693-5

BADERNA, D.; CALONI, F.; BENFENATI, E. 2019. Investigating landfill leachate toxicity in vitro: A review of cell models and endpoints. Environment International. 122:21-30. https://doi.org/10.1016/j.envint.2018.11.024

BERNAT, K.; ZABOROWSKA, M.; ZIELIŃSKA, M.; WOJNOWSKA-BARYŁA, I.; IGNALEWSKI, W. 2021. Biological treatment of leachate from stabilization of biodegradable municipal solid waste in a sequencing batch biofilm reactor. International Journal of Environmental Science and Technology. 18(5):1047-1060. https://doi.org/10.1007/s13762-020-02915-6

BOLYARD, S.C.; REINHART, D.R.; RICHARDSON, D. 2019. Conventional and fourier transform infrared characterization of waste and leachate during municipal solid waste stabilization. Chemosphere. 227:34-42. https://doi.org/10.1016/j.chemosphere.2019.04.035

CARVAJAL-FLÓREZ, E.; CARDONA-GALLO, S.A. 2019. Technologies applicable to the removal of heavy metals from landfill leachate. In Environmental Science and Pollution Research. 26(16):15725-15753. https://doi.org/10.1007/s11356-019-04888-7

CHEMLAL, R.; AZZOUZ, L.; KERNANI, R.; ABDI, N.; LOUNICI, H.; GRIB, H.; MAMERI, N.; DROUICHE, N. 2014. Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecological Engineering. 73:281-289. https://doi.org/10.1016/j.ecoleng.2014.09.043

COSSU, R.; RAGA, R. 2008. Test methods for assessing the biological stability of biodegradable waste. Waste Management. 28(2):381-388. https://doi.org/10.1016/j.wasman.2007.01.014

DABAGHIAN, Z.; PEYRAVI, M.; JAHANSHAHI, M.; RAD, A.S. 2018. Potential of Advanced Nano-structured Membranes for Landfill Leachate Treatment: A Review. In ChemBioEng Reviews. 5(2):119-138. https://doi.org/10.1002/cben.201600020

DAI, F.; ZHUANG, Q.; HUANG, G.; DENG, H.; ZHANG, X. 2023. Infrared spectrum characteristics and quantification of oh groups in coal. ACS Omega. 8(19):17064-17076. https://doi.org/10.1021/acsomega.3c01336

DAI, J.; MUMPER, R.J. 2010. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 15(10):7313-7352. https://doi.org/10.3390/molecules15107313

ENEV, V.; POSPÍŠILOVÁ, L.; KLUČÁKOVÁ, M.; LIPTAJ, T.; DOSKOČIL, L. 2014. Spectral characterization of selected humic substances. Soil and Water Research. 9(1):9-17. https://doi.org/10.17221/39/2013-swr

HE, X.S.; XI, B.D.; LI, X.; PAN, H.W.; AN, D.; BAI, S.G.; LI, D.; CUI, D.Y. 2013. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification. Chemosphere. 93(9):2208-2215. https://doi.org/10.1016/j.chemosphere.2013.04.039

HE, X.S.; XI, B.D.; WEI, Z.M.; JIANG, Y.H.; GENG, C.M.; YANG, Y.; YUAN, Y.; LIU, H.L. 2011b. Physicochemical and spectroscopic characteristics of dissolved organic matter extracted from municipal solid waste (MSW) and their influence on the landfill biological stability. Bioresource Technology. 102(3):2322-2327. https://doi.org/10.1016/j.biortech.2010.10.085

HE, X.S.; XI, B.D.; WEI, Z.M.; JIANG, Y.H.; YANG, Y.; AN, D.; CAO, J.L.; LIU, H.L. 2011a. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates. Journal of Hazardous Materials. 190(1–3):293-299. https://doi.org/10.1016/j.jhazmat.2011.03.047

HELMS, J.R.; STUBBINS, A.; RITCHIE, J.D.; MINOR, E.C.; KIEBER, D.J.; MOPPER, K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography. 53(3):955–969. https://doi.org/10.4319/lo.2008.53.3.0955

HUSSAIN, S.; ANEGGI, E.; COMUZZI, C.; BADERNA, D.; ZUCCACCIA, D.; TROVARELLI, A.; GOI, D. 2023. Abatement of the ecotoxicological risk of landfill leachate by heterogeneous Fenton-like oxidation. Environmental Science and Pollution Research. 30(8):21025-21032. https://doi.org/10.1007/s11356-022-23682-6

JOURAIPHY, A.; AMIR, S.; WINTERTON, P.; EL GHAROUS, M.; REVEL, J. C.; HAFIDI, M. 2008. Structural study of the fulvic fraction during composting of activated sludge-plant matter: Elemental analysis, FTIR and 13C NMR. Bioresource Technology. 99(5):1066–1072. https://doi.org/10.1016/j.biortech.2007.02.031

KALAL, R.; PANDAY, D. 2021. Kinetics and correlation analysis of reactivity in the oxidation of aliphatic primary alcohols by isoquinolinium dichromate in non-aqueous medium. Journal of the Indian Chemical Society. 98(2):100009. https://doi.org/10.1016/j.jics.2021.100009

KANG, K.H.; SHIN, H.S.; PARK, H. 2002. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. In Water Research. 36(16):4023-4032. https://doi.org/10.1016/S0043-1354(02)00114-8

KORAK, J.A.; MCKAY, G. 2024. Critical review of fluorescence and absorbance measurements as surrogates for the molecular weight and aromaticity of dissolved organic matter. Environmental Science: Processes and Impacts, 26:1663-1702. https://doi.org/10.1039/d4em00183d

LIU, Z.P.; WU, W.H.; SHI, P.; GUO, J.S.; CHENG, J. 2015. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Management. 41(p.111–118). https://doi.org/10.1016/j.wasman.2015.03.044

MASON, C.A.; EGLI, T. 1993. Dynamics of microbial growth in the decelerating and stationary phase of batch culture. Starvation in Bacteria. En: Kjelleberg, S. Starvation in Bacteria. Springer. E.E.U.U. p.81–102. https://doi.org/10.1007/978-1-4899-2439-1_4

MASSACCESI, L.; SORDI, A.; MICALE, C.; CUCINA, M.; ZADRA, C.; DI MARIA, F.; GIGLIOTTI, G. 2013. Chemical characterization of percolate and digestate during the hybrid solid anaerobic digestion batch process. Process Biochemistry. 48(9):1361-1367. https://doi.org/10.1016/j.procbio.2013.06.026

MIDDELBURG, J.J.; VLUG, T.; JACO, F.; VAN DER NAT, W.A. 1993. Organic matter mineralization in marine systems. Global and Planetary Change. 8(1-2):47–58. https://doi.org/10.1016/0921-8181(93)90062-S

MIJANGOS, F.; VARONA, F.; VILLOTA, N. 2006. Changes in solution color during phenol oxidation by Fenton reagent. Environmental Science and Technology. 40(17):5538-5543. https://doi.org/10.1021/es060866q

MURASE, N.; FRANKS, F. 1989. Salt precipitation during the freeze-concentration of phosphate buffer solutions. Biophysical Chemistry. 34(3):293-300. https://doi.org/10.1016/0301-4622(89)80066-3

PAYANDEH, P.E.; MEHRDADI, N.; DADGAR, P. 2017. Study of biological methods in landfill leachate treatment. Open Journal of Ecology. 7(09):568–580. https://doi.org/10.4236/oje.2017.79038

QI, G.; YUE, D.; NIE, Y. 2012. Characterization of humic substances in bio-treated municipal solid waste landfill leachate. Frontiers of Environmental Science and Engineering in China. 6(5):711–716. https://doi.org/10.1007/s11783-012-0421-z

RAMASWAMI, S.; BEHRENDT, J.; WANG, G.; EGGERS, S.; OTTERPOHL, R. 2016. Combining magnesium ammonium phosphate precipitation with membrane processes for ammonia removal from methanogenic leachates. Water and Environment Journal. 30(3–4):218-226. https://doi.org/10.1111/wej.12210

RIGOTTO, L.; AQUINO, S.F.; RIGOTTO, J.; SANTOS, G.; SILVA, L.M.L.; SANTIAGO, A.F. 2023. Dynamics of dissolved organic matter (DOM) in waste stabilization ponds: Insights into co-treatment of sanitary sewage and landfill leachate. Journal of Water Process Engineering. 55:104236. https://doi.org/10.1016/j.jwpe.2023.104236

ROY, D.; AZAÏS, A.; BENKARAACHE, S.; DROGUI, P.; TYAGI, R.D. 2018. Composting leachate: characterization, treatment, and future perspectives. In Reviews in Environmental Science and Biotechnology. 17(2):323-349. https://doi.org/10.1007/s11157-018-9462-5

SAID-PULLICINO, D.; ERRIQUENS, F.G.; GIGLIOTTI, G. 2007a. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology. 98(9):1822–1831. https://doi.org/10.1016/j.biortech.2006.06.018

SAID-PULLICINO, D.; KAISER, K.; GUGGENBERGER, G.; GIGLIOTTI, G. 2007b. Changes in the chemical composition of water-extractable organic matter during composting: Distribution between stable and labile organic matter pools. Chemosphere. 66(11):2166–2176. https://doi.org/10.1016/j.chemosphere.2006.09.010

SANGUANPAK, S.; CHIEMCHAISRI, C.; CHIEMCHAISRI, W.; YAMAMOTO, K. 2013. Removal and transformation of dissolved organic matter (DOM) during the treatment of partially stabilized leachate in membrane bioreactor. Water Science and Technology. 68(5):1091-1099. https://doi.org/10.2166/wst.2013.350

SANTOS CABRAL, M.M.; BASTOS DE ALMEIDA, Y.M.; CARDOSO ANDRADE, S.A.; SILVA CALDAS, C.; DUARTE DE FREITAS, J.; BEZERRA COSTA, C.A.C.; SOLETTI, J.I. 2022. Influence of phenolic compounds on color formation at different stages of the VHP sugar manufacturing process. Scientific Reports. 12:19922. https://doi.org/10.1038/s41598-022-24455-4

SETHI, S.; KOTHIYAL, N.C.; NEMA, A.K. 2012. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD. Journal of Environmental Science & Engineering. 54(3):323-330.

SIMPSON, A.J.; MCNALLY, D.J.; SIMPSON, M.J. 2011. NMR spectroscopy in environmental research: From molecular interactions to global processes. Progress in Nuclear Magnetic Resonance Spectroscopy 58(3-4):97-175. https://doi.org/10.1016/j.pnmrs.2010.09.001

SOSSOU, K.; BALA PRASAD, S.; AGBOTSOU, K.E.; SAIDOU SOULEY, H.; MUDIGANDLA, R. 2024. Characteristics of landfill leachate and leachate treatment by biological and advanced coagulation process: Feasibility and effectiveness – An overview. Waste Management Bulletin, 2(2):181-198. https://doi.org/10.1016/j.wmb.2024.04.009

STATE, W.; CHATTERJEE, N.; FLURY, M.; HINMAN, C.; COGGER, C.G. 2013. Chemical and physical characteristics of compost leachates - A review - Report prepared for the Washington State Department of Transportation. Disponible desde internet: https://www.wsdot.wa.gov/research/reports/fullreports/819.1.pdf

SUMMERS, R.S.; CORNEL, P.K.; ROBERTS, P.V. 1987. Molecular size distribution and spectroscopic characterization of humic substances. The Science of the Total Environmental. 62:27–37. https://doi.org/10.1016/0048-9697(87)90478-5

TENG, C.; ZHOU, K.; PENG, C.; CHEN, W. 2021. Characterization and treatment of landfill leachate: A review. In Water Research. 203:117525. https://doi.org/10.1016/j.watres.2021.117525

USSIRI, D.A.N.; JOHNSON, C.E. 2003. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma, 111(1-2):123-149. https://doi.org/10.1016/S0016-7061(02)00257-4

XIAOLI, C.; YONGXIA, H.; GUIXIANG, L.; XIN, Z.; YOUCAI, Z. 2013. Spectroscopic studies of the effect of aerobic conditions on the chemical characteristics of humic acid in landfill leachate and its implication for the environment. Chemosphere. 91(7):1058–1063. https://doi.org/10.1016/j.chemosphere.2013.01.052

ZENG, Y.; CHEN, Z.; DU, Y.; LYU, Q.; YANG, Z.; LIU, Y.; YAN, Z. 2021. Microbiologically induced calcite precipitation technology for mineralizing lead and cadmium in landfill leachate. Journal of Environmental Management. 296:113199. https://doi.org/10.1016/j.jenvman.2021.113199

ZHANG, Z.; TENG, C.; ZHOU, K.; PENG, C.; CHEN, W. 2020. Degradation characteristics of dissolved organic matter in nanofiltration concentrated landfill leachate during electrocatalytic oxidation. Chemosphere. 255:127055. https://doi.org/10.1016/j.chemosphere.2020.127055

Citado por

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.