Descripción del mecanismo bioquímico de la biohidrogenación en el rumen de ácidos grasos poliinsaturados: una revisión
Description of the biochemistry mechanism of polyunsaturated fatty acid ruminal biohydrogenation: a review
Contenido principal del artículo
Resumen
La hidrólisis de los galactolípidos, los fosfolípidos, los sulfolípidos y los triglicéridos es el primer paso en el metabolismo de lípidos en el rumen, liberando ácidos grasos saturados, monoinsaturados y poliinsaturados. Recientemente, se ha reportado que el mecanismo de producción de ácido linoléico conjugado (C18:2 cis-9, trans-11, ALC), está asociado a un desplazamiento prototrópico y que en la síntesis de su isómero C18:2 trans-10, cis-12, participa la forma oxidada de flavin adenin dinucleótido (FAD). Primero, el ácido linoléico (C18:2 cis-9, cis-12, ALi) es convertido en ALC, que se transforma en ácido trans-vaccénico (C18:1 trans-11, ATV), produciéndose, finalmente, ácido esteárico. El ALi es el precursor del ALC y ATV, y el FAD es usado como cofactor en estos procesos. Una de las conclusiones de esta revisión es que a medida que el conocimiento del proceso de biohidrogenación aumenta, se dispone de más oportunidades para su aplicación. Una de las más relevantes es el diseño de estrategias nutricionales para incrementar la concentración de ácidos grasos bioactivos en leche y en carne.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
ABUGHAZALEH, A.A.; JACOBSON, B.N. 2007. The effect of pH and polyunsaturated C18 fatty acid source on the production of vaccenic acid and conjugated linoleic acid in ruminal cultures incubated with docosahexaenoic acid. Anim. Feed Sci. Technol. 136:11-22.
ABUGHAZALEH, A.A.; JENKINS, T.C. 2004. Disappearance of Docosahexaenoic and Eicosapentaenoic acids from cultures of mixed ruminal microorganisms. J. Dairy Sci. 87:645-651.
AGAZZI, A.; BAYOURTHE, C.; NICOT, M.C.; TROEGELER MEYNADIER, A.; MONCOULON, R.; ENJANBERT, P. 2004. In situ ruminal biohydrogenation of fatty acids from extruded soybeans: effects of dietary adapta tion and of mixing with lecithin or wheat straw. Anim. Feed Sci. Technol. 117:165-175.
ALBERTÍ, P.; GÓMEZ, I.; MENDIZABAL, J.A.; RIPOLL, G.; BARAHONA, M.; SARRIÉS, V.; INSAUSTI, K.; BERIAIN, M.J.; PURROY, A.; REALINI, C. 2013. Effect of whole linseed and rumen-protected conjugated linoleic acid enriched diets on feedlot performance, carcass characteristics, and adipose tissue development in young Holstein bulls. Meat Sci. 94:208-214.
ASHES, J.R.; SIEBERT, B.D.; GULATI, S.K.; CUTHBERTSON, A.Z.; SCOTT, T.W. 1992. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids. 27:629-631.
BANKS, A.; HILDITCH, T.P. 1931. The Glyceride structure of beef talows. Biochem. J. 25:1168-1182.
BAUCHART, D.; LEGAY-CARMIER, F.; DOREAU, M., GAILLARD, B. 1990. Lipid metabolism of liquid-associated and solid-adherent bacteria in rumen contents of dairy cows offered lipid supplemented diet. Br. J. Nutr. 63:563-578.
BAUMAN, D.E.; BAUMGARD, L.H.; CORL, B.A.; GRIINARI, J.M. 1999. Biosynthesis of conjugated linoleic acid in ruminants. J. Anim Sci. 77:1-15.
BUCCIONI, A.; ANTONGIOVANNI, M.; PETACCHI, F.; MELE, M.; SERRA, A.; SECCHIARI, P.; BENVENUTI, D. 2006. Effect of dietary fat quality on C18:1 fatty acids and conjugated linoleic acid production: An in vitro rumen fermentation study. Anim. Feed Sci. Technol. 127:268-282.
BUCCIONI, A.; DECANDIA, M.; MINIERI, S.; MOLLE, G.; CABIDDU, A. 2012. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1-25.
CABIDDU, A.; SALIS, L.; TWEED, J.K.S.; MOLLE, G.; DECANDIA, M.; LEE, M.R.F. 2010. The influence of plant polyphenols on lipolysis and biohydrogenation in dried forages at different phenological stages: in vitro study. J. Sci. Food Agric. 90:829-835.
CHOUINARD, P.Y.; CORNEAU, L.; BUTLER, B.R.; CHILLIARD, Y.; DRACKLEY, J.K.; BAUMAN, D.E. 2001. Effect of dietary lipid source on conjugated linoleic acid concentration in milk fat. J. Dairy Sci. 84:680-690.
CHOI, N.; PARK, H.G.; KIM, J.H.; HWANG, H.; KWON, K.H.; YOON, J.A.; KWON, E.G.; CHANG, J.; HWANG, I.H.; KIM, Y.J. 2009. Characterization of environmental factors in Conjugated Linoleic Acid Production by mixed rumen bacteria. J. Agric. Food Chem. 57:9263-9267.
CHOW, T.T.; FIEVEZ, V.; MOLONEY, A.P.; RAES, K.; DEMEYER, D.; SMET, S. 2004. Effect of fish oil in vitro rumen lipolysis, apparent biohydrogenation of linoleic and linolenic acid and accumulation of biohydrogenation intermediated. Anim. Feed Sci. Technol. 117:1-12.
DAWSON, R.M.C.; KEMP, P. 1969. The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 115:351-352.
DAWSON, R.M.C.; HEMINGTON, N. 1974. Digestion of grass lipids and pigments in the sheep rumen. Br. J. Nutr. 32:327-340.
DAWSON, R.M.C.; HEMINGTON, N.; GRIME, D.; LANDER, D.; KEMP, P. 1974. Lipolysis and hydrogenation of galactolipids and the accumulation of phytanic acid in the rumen. Biochem. J. 144:169-171.
DHIMAN, T.R.; SATTER, L.D.; PARIZA, M.W.; GALLI, M.P.; ALBRIGHT, K.; TOLOSA, M.X. 2000. Conjugated linoleic acid (ALC) content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci. 83:1016-1027.
DOREAU, M.; REARTE, D.; PORTELLI, J.; PEYRAUD, J.L. 2007. Fatty acid ruminal metabolism and digestibility in cows fed perennial ryegrass. Eur. J. Lip. Sci. Technol. 109:790-798.
ENJALBERT, F.; EYNARD, P.; NICOT, M.C.; TROEGELERMEYNADIER, A.; BAYOURTHE, C.; MOCOULON, R. 2003. In vitro versus in situ ruminal biohydrogenation of unsaturated fatty acids from raw or extruded mixture of ground canola seed/canola meal. J Dairy Sci. 86:351-359.
GRIINARI, J.M.; BAUMAN, D.E. 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecs, M.P.; Mossoba, M.M.; Kramer, J.K.; Pariza, M.W.; Nelson, G.J.;(eds.). Advanced in conjugated linoleic acids reseach Vol. 1 Champaign (IL): AOCS Press. p.180-200.
HALMEMIES-BEAUCHET-FILLEAU, A., KAIRENIUS, P.; AHVENJÄRVI, S.; CROSLEY, L.K.; MUETZEL, S.; HUHTANEN, P.; VANHATALO, A.; TOIVONEN, V.; WALLACE, R.J.; SHINGFIELD, K.J. 2013. Effect of forage conservation method on ruminal lipid metabolism and microbial ecology in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. J. Dairy Sci. 96:2428-2447.
HARFOOT, C.G.; HAZLEWOOD, G.P. 1997. Lipid metabolism in the rumen. In: Hobson, P.N.; Stewart, C.S. (eds).The Rumen Microbial Ecosystem, ed. Chapman and Hall, London, UK. p.382-426.
HASSIM, H.A.; LOURENÇO, M.; GOEL, G.; VLAEMINCK, B.; GOH, Y.M.; FIEVEZ, V. 2010. Effect of different inclusion levels of oil palm fronds on in vitro rumen fermentation pattern, fatty acid metabolism and apparent biohydrogenation of linoleic and linolenic acid. Anim Feed Sci. Technol. 162:155-158.
HAZLEWOOD, G.P.; KEMP, P.; LANDER, D.; DAWSON, R.M.C. 1976. C18 unsaturated fatty acid biohydrogenation patterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipids. Br. J. Nutr. 35:293-297.
HENDERSON, C. 1971. A Study of the Lipase Produced by Anaerovibrio Lipolytica, a Rumen Bacterium. J. Gen. Microbiol. 65:81-89.
HERRERA, J.A.; SHAHABUDIN, A.K.M.; FAISAL, M.; ERSHENG, G.; WEI, J.; LIXIA, D.; GANDAHO, T.; LOPEZ, P. 2004. Efectos de la suplementación oral con Calcio y ácido linoléico conjugado en primigrávidas de alto riesgo. Colombia Médica. 35(1):1-8.
HOBSON, P.N.; SUMMERS, K. 1966. Effect of growth rate on the lipase activity of a rumen bacterium. Nature. 209:736-737.
HOBSON, P.N.; SUMMER, R. 1967. The continuos culture of anaerobic bacteria. J. Gen. Microbiol. 47:53-65.
HUGHES, P.E.; TOVE, S.B. 1980a. Identification of an endogenous electron donor for biohydrogenation as -tocopherolquinol. J. Biol. Chem. 255:4447-4452.
HUGHES, P.E.; TOVE, S.B. 1980b. Identification of deoxy-tocopherolquinol as another endogenous electron donor for biohydrogenation. J. Biol. Chem. 255:11802-11806.
HUGHES, P.E.; HUNTER, W.J.; TOVE, S.B. 1982. Biohydrogenation of unsaturated fatty acids. Purification and properties of cis-9, trans-11-octadecadienoate reductase. J. Biol. Chem. 257(1):3643-3649.
HUNGATE, R.E. 1966. The rumen and its microbes. New York academic press, New York, NY, USA. p.315-328.
JENKINS, T.C. 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76:3851-3863.
JENKINS, T.C.; WALLACE, R.J.; MOATE, P.J.; MOSLEY, E.E. 2008. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86: 397-412.
JOUANY, J.P.; LASSALAS, B.; DOREAU, M.; GLASSER, F. 2007. Dynamic features of the rumen metabolism of linoleic acid, linolenic acid and linseed oil measu red in vitro. Lipids. 42: 351-360.
KANIUGA, Z. 2008. Chilling response of plants: importance of galactolipase, free fatty acids and free radicals. Plant Biol. 10:171-184.
KELLY, M.L.; KOLVER, E.S.; BAUMAN, D.E.; VAN AMBURGH, M.E.; MULLER, L.D. 1998. Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating dairy cows. J. Dairy Sci. 81:1630-1636.
KEMP, P.; LANDER, D.J. 1984. The hydrogenation of the series of methylene-interrupted cis,cis-octadecadienoic acids by pure cultures of six rumen bacteria. Br. J. Nutr. 52:171-177.
KEMP, P.; LANDER, D.J.; HOLMAN, R.T. 1984a. The hydrogenation of the series of methylene-interrupted cis, cis-octadecadienoic acid by pure cultures of rumen bacteria. Br. J. Nutr. 52:171-177.
KEMP, P.; LANDER, D.J.; GUNSTONE, F.D. 1984b. Hydrogenation of some cis and trans octadecenoic acid to stearic acid by a rumen Fusocillus sp. Br. J. Nutr. 52:165-170.
KEMP, P.; WHITE, R.W.; LANDER, D.J. 1975. The hydrogenation of insaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90:100-114.
KEPLER, C.R.; TUCKER, W.P.; TOVE, S.B. 1971. Biohydrogenation of unsaturated fatty acids. V. Stereoespecificity of proton addition and mechanism of action of linoleic acid 12-cis, 11-trans isomerase from butyrivibrio fibrisolvens. J. Biol. Chem. 246:2765-2771.
KHANAL, R.C. 2004. Potential health beneficts of conjugated linoleic acid (CLA): A review. AsianAustralasian J. Anim. Sci. 17(9):1315-1328.
LEE, M.R.F.; PAFITT, L.J.; SCOLLAN, N.D.; MINCHIN, F.R. 2007. Lipolysis in red clover with different polyphenol oxidase activities in the presence and absence of rumen fluid. J. Sci. Food Agric. 87:1308-1314.
LEE, Y.; JENKINS, T.C. 2011. Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J. Nutr. 141(8):1445-1450.
LEGAY-CARMIER, F.; BAUCHART, D. 1989. Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soya-bean oil. Br. J. Nutr. 61:725-740.
LIAVONCHANKA, A.; HORNUNG, E.; FEUSSNER, I.; RUDOLPH, M.G. 2006. Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Proc. Nal. Acad. Sci. USA. 103:2576-2581.
LIAVONCHANKA, A.; FEUSSNER, I. 2008. Biochemistry of PUFA Double Bond Isomerases Producing Conjugated Linoleic Acid. ChemBioChem. 9:1867-1872.
LOURENÇO, M.; RAMOS-MORALES, E.; WALLACE, R.J. 2010. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal Feed Sci. Techn. 4(7):1008-1023.
MAIA, M.R.G.; CHAUDHARY, L.C.; FIGUERES, L.; WALLACE, R.J. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 91:303-314.
MAIA, M.R.G.; CHAUDHARY, L.C.; BESTWICK, C.S.; RICHARDSON, A.J.; McKAIN, N.; LARSON, T.R.; GRAHAM, I.A.; WALLACE, R.J. 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butirivibrio fibrisolvens. BMC Microbiol. 10:52-62.
MARTIN, J.C.; VALEILLE, K. 2002. Conjugated linoleic acids: all the same or to everyone its own function? Reprod. Nutr. Dev. 42:525-536.
McKAIN, N.; SHINGFIELD, K.J.; WALLACE, R.J. 2010. Metabolism of conjugated linoleic acids and 18:1 fatty acids by ruminal bacteria: products and mecha nisms. Microbiol. 156:579-588.
MOATE, P.J.; BOSTON, R.C.; JENKINS, T.C.; LEAN I.J. 2008. Kinetics of ruminal lipolysis of triacylglycerol and biohydrogenation of long-chain fatty acids: New insights from old data. J. Dairy. Sci. 91:731-742.
O'SHEA, M.; LAWLESS, F.; STATON, C.; DEVERY, R. 1998. Conjugated linoleic acid in bovine milk fat: a food-based approach to cáncer chemoprevention. Trends in Food Sci. & Technol. 9:192-196.
PERFIELD, J.W.; LOCK, A.L.; GRIINARI, J.M.; SÆBØ, A.; DELMONTE, P.; DWYER, D.A.; BAUMAN, D.E. 2007. Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J. Dairy Sci. 90: 2211-2218.
PRIETO, N.; DUGAN, M.E.R.; LÓPEZ-CAMPOS, Ó.; AALHUS, J.L.; UTTARO, B. 2013. At line prediction of PUFA and biohydrogenation intermediates in perirenal and subcutaneous fat from cattle fed sunflower or flaxseed by near infrared spectroscopy. Meat Sci. 94:27-33.
RIBEIRO, C.V.M.; EASTRIDGE, L.; FIRKINS, J.L.; STPIERRE, N.R.; PALMQUIST, D.L. 2007. Kinetics of fatty acid biohydrogenation in vitro. J. Dairy. Sci. 90:1405-1416.
ROSENFELD, I.S.; TOVE, S.B. 1971. Biohydrogenation of unsaturated fatty acids. IV. Source of hydrogen and stereospecificity of reduction. J. Biol. Chem. 246:5025-5030.
SACHAN, D.S.; DAVIS, C.L. 1969. Hydrogenation of linoleic acid by a rumen spirochete. J. Bacteriol. 98(1):300-301.
SHEN, X.; DANNENBERGER, D.; NUERNBERG, K.; NUERNBERG, G.; ZHAO, R. 2011. Trans-18:1 and CLA isomers in rumen and duodenal digesta of bulls fed n-3 and n-6PUFA-based diets. Lipids. 46:831-841.
SHINGFIELD, K.J.; LEE, M.R.F.; HUMPHRIES, D.J.; SCOLLAN, N.D.; TOIVONEN, V.; REYNOLDS, C.K.; BEEVER, D.E. 2010. Effect of incremental amounts of fish oil in the diet on ruminal lipid metabolism in growing steers. Brit. J. Nutr. 104:56-66.
SINGH, S.; HAWKE, J.C. 1979. The in vitro lipolysis and biohydrogenation of monogalactosyldiglyceride by whole rumen contents and its fractions. J. Sci. Food Agric. 30:603-612.
STERK, A.; HOVENIER, R.; VLAEMINCK, B.; VAN VUUREN, A.M.; HENDRIKS, W.H.; DIJKSTRA, J. 2010. Effects of chemically or technologically treated linseed products and docosahexaenoic acid addition to linseed oil on biohydrogenation of C18:3n-3 in vitro. J. Dairy Sci. 93:5286-5299.
TROEGELER-MEYNADIER, A.; NICOT, M.C.; BAYOURTHE, C. 2003. Effects of pH and concentration of linoleic and linolenic acid on extent and intermedia tes of ruminal biohydrogenation in vitro. J. Dairy. Sci. 86:4054-4063.
VÁRADYOVÁ, Z.; KISIDAYOVÁ, P.S.; DUSAN, J. 2008. Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils. Anim. Feed. Sci. Technol. 144:44-54.
WALLACE, R.J.; MCKAIN, N.; SHINGfiELD, K.J.; DEVILLARD, E. 2007. Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J. Lipid. Res. 48:2247-2254.
WRIGHT, D.E. 1959. Hydrogenation of lipids by rumen protozoa. Nature. 184:875-876.
WRIGHT, D.E. 1960. Pectic enzymes in rumen protozoa. Arch. Biochem. Biophys. 86:251-254.
YAMAZAKI, S.; TOVE, S.B. 1979. Biohydrogenation of unsaturated fatty acids. Presence of dithionite and an endogenous electron donor in butyrivibrio fibrisolvens. J. Biol. Chem. 254(10):3812-3817.
YAÑEZ-RUIZ, D.R.; SCOLLAN, N.D.; MERRY, R.J.; NEWBOLD, C.J. 2006. Contribution of rumen protozoa to duodenal flow of nitrogen, conjugated linoleic acid and vaccenic acid in steers fed silages differing in their water-soluble carbohydrate content. Br. J. Nutr. 96:861-869.
ZENED, A.; ENJALBERT, F.; NICOT, M.C.; TROEGELER-MEYNADIER, A. 2013. Starch plus sunflower oil addition to the diet of dry dairy cows results in a trans-11 to trans-10 shift of biohydrogenation. J. Dairy Sci. 96:451-459.