Impacto de la adición de caboximetilcelulosa y agua en las propiedades fisicoquímicas y de calidad de pan libre de gluten

Contenido principal del artículo

Autores

Fernán Martínez Jiménez
Eduardo Rodríguez Sandoval
María Soledad Hernández Gómez

Resumen

El objetivo de este estudio fue determinar la influencia de la adición de agua y de carboximetilcelulosa (CMC) en las propiedades fisicoquímicas y de calidad de pan libre de gluten (GF), elaborado con harina de arroz, almidón de maíz y almidón de yuca. La harina de arroz presentó los valores más altos de índice de absorción de agua (WAI) e índice de solubilidad de agua (WSI). Las concentraciones de CMC y agua fueron de 1-3% y 80-90%, con base en la harina de arroz, componente mayoritario de la mezcla, respectivamente. Se utilizó la Metodología de Superficie de Respuesta (MSR). Los valores máximos para el volumen específico (3,92mL/g) y la altura (77,82mm), se mostraron con 85% de agua y 2% de CMC. El mayor rendimiento, se evidenció con 3% de CMC y 80% de agua, pero este tratamiento tuvo el volumen específico y la altura más baja. En cuanto a las propiedades texturales, la combinación de 3% de CMC y 80% de agua generó una miga con la mayor firmeza (16,6N) y dureza (91,2N); los valores más bajos de estos parámetros, se presentaron con 85% de agua y 2% de CMC. El mayor valor de cohesividad (0,46), se registró con 90% de agua y 3% de CMC y la condición más baja de cohesividad, se reportó con 80% de agua y 1% de CMC. La inclusión de mayores concentraciones de CMC (3%) genera productos GF, con mayor firmeza, cohesividad, elasticidad y dureza.


 

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional., que permite a terceros utilizar lo publicado siempre y cuando mencionen la autoría del trabajo y a la primera publicación en esta revista.

Se recomienda a los autores incluir su trabajo en redes sociales como Researchgate y repositorios institucionales una vez publicado el artículo o hecho visible en la página de la revista, sin olvidar incluir el identificador de documento digital y el nombre de la revista.

 

Referencias

1. AMERICAN ASSOCIATION OF CEREAL CHEMISTS-AACC-. 2000. Approved Methods of Analysis, 10th ed. Methods 44-15A, 74-09. American Association of Cereal Chemists. AACC International, St Paul, MN, USA.

2. AOAC INTERNATIONAL. 1997. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.

3. ANDERSON, R.A.; CONWAY, V.F.; PFEIFER, V.F.; GRIFFIN, E.L. 1969. Gelatinization of corn grits by roll - and extrusion - cooking. Cereal Sci. Today. 14:4-12.

4. ARENDT, E.K.; MORRISSEY, A.; MOORE, M.M.; DAL BELLO, F. 2008. 13 - Gluten-free breads. In: Elke, K.A.; Dal Bello, F. (eds). Gluten-Free Cereal Products and Beverages. Ed. Academic Press. p.289-319.

5. CAPPA, C.; LUCISANO, M.; MARIOTTI, M. 2013. Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality. Carbohydr. Polym. 98(2):1657-1666.

6. CONFORTI, F.D.; DAVIS, S.F. 2006. The effect of soya flour and flaxseed as a partial replacement for bread flour in yeast bread. Int. J. Food Sci. Tech. 41:95-101.

7. DE LA HERA, E.; ROSELL, C.M.; GOMEZ, M. 2014. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem.151:526-531.

8. DEMIRKESEN, I.; KELKAR, S.; CAMPANELLA, O.H.; SUMNU, G.; SAHIN, S.; OKOS, M. 2014. Characterization of structure of gluten-free breads by using X-ray microtomography. Food Hydrocoll. 36:37-44.

9. DEMIRKESEN, I.; MERT, B.; SUMNU, G.; SAHIN, S.2010. Rheological properties of gluten-free bread formulations. J. Food Eng. 96(2):295-303.

10. DIOP, C.I.K.; LI, H.L.; XIE, B.J.; SHI, J. 2011. Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chem. 126(4):1662-1669.

11. GOESAERT, H.; BRIJS, K.; VERAVERBEKE, W.S.; COURTIN, C.M.; GEBRUERS, K.; DELCOUR, J.A. 2005. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci. Tech. 16(1-3):12-30.

12. GUARDA, A.; ROSELL, C.M.; BENEDITO, C.; GALOTTO, M.J. 2004. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocoll.18(2):241-247.

13. HAGER, A.S.; ARENDT, E.K. 2013. Influence of hydroxy- propylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of glutenfree breads based on rice, maize, teff and buckwheat. Food Hydrocoll. 32(1):195-203.

14. HASJIM, J.; LI, E.; DHITAL, S. 2013. Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydr. Polym. 92(1):682-690.

15. INGREDION COLOMBIA S.A. 2013. ExpandexTM modified tapioca starch. Consultado 25 de mayo de 2013. Disponible desde Internet en: www.expandexglutenfree.com (con acceso 25/05/2013).

16. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION -ISO-. 1997. ISO 10520: Determination of starch content - Ewers polarimetric method. International Organization for Standardization. Geneva, Switzerland.

17. JI, Y.; ZHU, K.; QIAN, H.; ZHOU, H. 2007. Staling of cake prepared from rice flour and sticky rice flour. Food Chem. 104(1):53-58.

18. KAUSHAL, P.; KUMAR, V.; SHARMA, H.K. 2012. Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT - Food Sci. Tech. 48(1):59-68.

19. LAZARIDOU, A.; DUTA, D.; PAPAGEORGIOU, M.; BELC, N.; BILIADERIS, C.G. 2007. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 79(3):1033-1047.

20. LEE, S.Y.; CHEN, H.; HANNA, M.A. 2008. Preparation and characterization of tapioca starch-poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Indust. Crops Products. 28(1):95-106.

21. LÓPEZ-TENORIO, J.A.; RODRÍGUEZ-SANDOVAL, E.; SEPÚLVEDA-VALENCIA, J.E. 2012. Evaluación de caracteristicas fisicas y texturales de pandebono. Acta Agron. 61(3):273-281.

22. MAHMOUD, R.M.; YOUSIF, E.I.; GADALLAH, M.G.E.; ALAWNEH, A.R. 2013. Formulations and quality characterization of gluten-free Egyptian balady flat bread. Ann. Agr. Sci. 58(1):19-25.

23. MANJARRES-PINZON, K.; CORTES-RODRIGUEZ, M.; RODRÍGUEZ-SANDOVAL, E. 2013. Effect of drying conditions on the physical properties of impregnated orange peel. Braz. J. Chem. Eng. 30(3):667-676.

24. MARIOTTI, M.; PAGANI, M.A.; LUCISANO, M. 2013. The role of buckwheat and HPMC on the breadmaking properties of some commercial gluten-free bread mixtures. Food Hydrocoll. 30(1):393-400.

25. MOHAMMADI, M.; SADEGHNIA, N.; AZIZI, M.H.; NEYESTANI, T.R.; MORTAZAVIAN, A.M. 2013. Development of gluten-free flat bread using hydrocolloids: Xanthan and CMC. J. Indust. Eng. Chem. 20(4):1812-1818.

26. ONYANGO, C.; MUTUNGI, C.; UNBEHEND, G.; LINDHAUER, M.G. 2009a. Creep-recovery parameters of gluten-free batter and crumb properties of bread prepared from pregelatinised cassava starch, sorghum and selected proteins. Int. J. Food Sci. Tech. 44:2493-2499

27. ONYANGO, C.; UNBEHEND, G.; LINDHAUER, M.G. 2009b. Effect of cellulose-derivatives and emulsifiers on creep-recovery and crumb properties of glutenfree bread prepared from sorghum and gelatinised cassava starch. Food Res. Int. 42(8):949-955.

28. ONYANGO, C.; UNBEHEND, G.; LINDHAUER, M. 2011. Modification of gluten-free sorghum batter and bread using maize, potato, cassava or rice starch. LWT - Food Sci. Tech. 44(3):681-686.

29. PONGJARUVAT, W.; METHACANON, P.; SEETAPAN, N.; FUONGFUCHAT, A.; GAMONPILAS, C. 2014. Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocoll. 36:143-150.

30. RODRÍGUEZ, P.; SAN MARTÍN, M.E.; GONZÁLEZ DE LA CRUZ, G. 2001. Calorimetría diferencial de barrido y rayos-x del almidón obtenido por nixtamalización fraccionada. Superf. Vacío. 13:61-65.

31. RODRIGUEZ-SANDOVAL, E.; SANDOVAL, G.; CORTES-RODRÍGUEZ, M. 2012. Effect of quinoa and potato flours on the thermomechanical and breadmaking properties of wheat flour. Braz. J. Chem. Eng. 29(3):503-510.

32. RODRIGUEZ-SANDOVAL, E.; FRANCO, C.M.L.; MANJARRES-PINZON, K. 2014. Effect of fructooligosaccharides on the physicochemical properties of sour cassava starch and baking quality of gluten-free cheese bread. Starch-Stärke. 66:678-684.

33. SAHIN, S.; SUMNU, S.G. 2006. Physical Properties of Foods. Ed. Springer Verlag. New York, NY, USA. p.30-33.

34. SCIARINI, L.S.; RIBOTTA, P.D.; LEÓN, A.E.; PÉREZ, G.T. 2012. Incorporation of several additives into gluten free breads: Effect on dough properties and bread quality. J. Food Eng. 111(4):590-597.

35. ZIOBRO, R.; WITCZAK, T.; JUSZCZAK, L.; KORUS, J. 2013. Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocoll. 32(2):213-220.

Descargas

La descarga de datos todavía no está disponible.