Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
Physical and compositional characteristics of cheese and yogurt made from partially demineralized milk protein concentrate
Contenido principal del artículo
Resumen
El uso de concentrados de proteína de leche (MPC) ha sido estudiado ampliamente; sin embargo, su desmineralización parcial por medio de la diafiltración (DF) y el efecto de este tratamiento sobre su aptitud en la elaboración de productos coagulados no está completamente explorada. Se planteó, entonces, estudiar el proceso de desmineralización de un MPC por medio de varios ciclos de DF y evaluar el efecto de este tratamiento sobre las características composicionales y texturales de productos coagulados enzimáticamente y por acidez. El MPC, obtenido por ultrafiltración, fue diafiltrado en dos ciclos; luego, el MPC fue usado para elaborar un queso fresco, un yogurt batido y uno cuchareable. La aplicación de un ciclo de DF removió el 22,2% de las cenizas y 8,12% del calcio, pero no hubo diferencias significativas (P>0,05) con respecto a la aplicación de dos ciclos de DF. El queso elaborado con el MPC, con uno y dos ciclos de DF, fue menos duro y presentó menor resistencia a la masticación que el elaborado con MPC sin DF y el yogurt cuchareable presentó menor elasticidad, debido al menor contenido de sólidos totales y calcio, los cuales, fueron afectados por la DF. La desmineralización parcial aumentó el tiempo de coagulación y favoreció la formación de geles más débiles. La DF alcanzó el máximo de desmineralización de la leche en un solo ciclo.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
BANACH, J.; LIN, Z.; LAMSAL, B.P. 2013. Enzymatic modification of milk protein concentrate and characterization of resulting functional properties. LWT-Journal. 54(2):397-403.
https://doi.org/10.1016/j.lwt.2013.06.023
BRANS, G.; SCHROËN, C.; VAN DER SMAN, R.; BOOM, R. 2004. Membrane fractionation of milk: state of the art and challenges. J. Membrane Science. 243(1-2):263-272.
https://doi.org/10.1016/j.memsci.2004.06.029
BRUZANTIN, F.; DANIEL, J.; DA SILVA, P.; SPOTO, M. 2016. Physicochemical and sensory characteristics of fat-free goat milk yogurt with added stabilizers and skim milk powder fortification. J. Dairy Science. 99(5):3316-3324.
https://doi.org/10.3168/jds.2015-10327
CAO, J.; ZHANG, W.; WU, S.; LIU, C.; LI, Y.; LI, H.; ZHANG, L. 2015. Short communication: Effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate. J. Dairy Science. 98(1):100-105.
https://doi.org/10.3168/jds.2014-8619
CHANDAN, R.C.; O’RELL, K.R. 2006. Manufacture of Various Types of Yogurt. En: Chandan, R.; White, C.; Kilara, A.; Hui, Y. (eds). Manufacturing Yogurt and Fermented Milks. Blackwell Publishing, Ames, Iowa, USA, p.211-213.
https://doi.org/10.1002/9780470277812.ch13
CHENCHAIAH, M.; SALUNKE, P.; BISWAS, A.; KOMMINENI, A.; METZGER, L. 2015. Manufacture of modified milk protein concentrate utilizing injection of carbon dioxide. J. Dairy Science. 98(6):3577-3589.
https://doi.org/10.3168/jds.2014-8946
ESHPARI, H.; JIMENEZ-FLORES, R.; TONG, P.; CORREDING, M. 2015. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates. J. Dairy Science. 98(12):8454-8463.
https://doi.org/10.3168/jds.2015-9856
ESHPARI, H.; TONG, P.; CORREDIG, M. 2014. Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk. J. Dairy Science. 97(12):7394-7401.
https://doi.org/10.3168/jds.2014-8609
FERRAGUT, V.; CRUZ, N.; TRUJILLO, A.; GUAMIS, B.; CAPELLAS, M. 2009. Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. J. Food Engineering. 92(1):63-69.
https://doi.org/10.1016/j.jfoodeng.2008.10.026
FERRER, M.; ALEXANDER, M.; CORREDING, M. 2014. Changes in the physico-chemical properties of casein micelles during ultrafiltration combined with diafiltration. LWT-Food Science and Technology. 59(1):173-180.
https://doi.org/10.1016/j.lwt.2014.04.037
FOX, P. 2001. Milk proteins as food Ingredients. Int. J. Dairy Technology. 54(2):41-55.
https://doi.org/10.1046/j.1471-0307.2001.00014.x
FOX, P.; UNIACKE-LOWE, T.; MCSWEENEY, P.; O’MAHONY, J. 2015. Production and Utilization of Milk. En: Fox, P.; Uniacke-Lowe, T.; McSweeney, P.; O’Mahony, J. (eds). Dairy Chemistry and Biochemistry. Ed. Springer International Publishing, Suiza. p.1-3.
FRANCOLINO, S.; LOCCI, F.; GHIGLIETTI, R.; LEZZI, R.; MUCCHETTI, G. 2010. Use of milk protein concentrate to standardize milk composition in Italian citric Mozzarella cheese making. LWT-Journal. 43(2):310-314.
https://doi.org/10.1016/j.lwt.2009.08.007
GAUCHERON, F. 2005. The minerals of milk. Reproduction Nutrition Development. 45(4):473-483.
https://doi.org/10.1051/rnd:2005030
GAUCHERON, F. 2011. Milk and Dairy Products: A Unique Micronutrient Combination. J. American College of Nutrition. 30:400S-409S.
http://dx.doi.org/10.1080/07315724.2011.10719983
GAVAZZI-APRIL, C.; BENOIT, S.; DOYEN, A.; BRITTEN, M.; POULIOT, Y. 2018. Preparation of milk protein concentrates by ultrafiltration and continuous diafiltration: effect of process design on overall efficiency. J. Dairy Science. 101:9670-9679.
https://doi.org/10.3168/jds.2018-14430
GUTIÉRREZ, N.; TRANCOSO, N.; LEAL, M. 2013. Texture profile analysis of Fresh cheese and Chihuahua cheese using miniature cheese models. Tecnociencia Chihuahua. 7(2):65-74.
HAQUE, Z.; SHARMA, M. 2002. Influence of cation sequestering and pH on quiescent thermal association of lactoglobulin NB from fresh Cheddar whey: an insight into gelation mechanism. Food Science and Technology Research. 8(4):311-316.
https://doi.org/10.3136/fstr.8.311
HASHIM, I.; KGALIL, A.; AFIFI, H. 2009. Quality characteristics and consumer acceptance of yogurt fortified with date fiber. J. Dairy Science. 92(11):5403-5407.
https://doi.org/10.3168/jds.2009-2234
INTERNATIONAL DAIRY FEDERATION, IDF. 1964. Determination of the ash content of processed cheese products. Standard FIL-IDF 27:1964. International Dairy Federation, Brussels, Belgium.
INTERNATIONAL DAIRY FEDERATION, IDF. 1986. Cheese and processed cheese product: determination of fat content- gravimetric method (Reference Method). Standard FIL-IDF 5B:1986. International Dairy Federation, Brussels Belgium.
INTERNATIONAL DAIRY FEDERATION, IDF. 1993. Milk: determination of nitrogen content. Standard FIL-IDF 20B:1993. International Dairy Federation, Brussels Belgium.
INTERNATIONAL DAIRY FEDERATION, IDF. 1996. Milk: Determination of fat content (Röse-Gottlieb gravimetric method). IDF Standard 1D. Standard FIL-IDF 1D: 1996. International Dairy Federation, Brussels Belgium.
INTERNATIONAL STANDARD ISO. 2003. ISO: 17294-2: Water quality: Application of inductively coupled plasma mass spectrometry (ICP-MS), Parte 2: Determination of 62 elements. Ginebra, Suiza.
KENNETH, S.; DUSTAN, D.; MARTIN, G. 2018. Influence of diafiltration on flux decline during skim milk ultrafiltration. International Dairy Journal. 87:67-74.
https://doi.org/10.1016/j.idairyj.2018.07.021
KENNETH, S.; MALAVIKA, H.; DALTON, J.; DAVE, E.; GREGORY, J. 2017. Mechanisms of flux decline in skim milk ultrafiltration: A review. J. Membrane Science. 523:144-162.
https://doi.org/10.1016/j.memsci.2016.09.036
KUMAR, P.; SHARMA, N.; RANJAN, R.; KUMARM, S.; BHAT, Z.; JEONG, D. 2013. Perspective of membrane technology in dairy industry: a review. Asian-Australasian J. Animal Science. 26(9):1347-1358.
http://dx.doi.org/10.5713/ajas.2013.13082
LAUZIN, A.; POULIOT, Y.; BRITTEN, M. 2020. Understanding the differences in cheese-making properties between reverse osmosis and ultrafiltration concentrates. J. Dairy Science. 103:201-209.
https://doi.org/10.3168/jds.2019-16542
LIU, D.; LI, J.; JIE, Z.; LIU, X.; WANG, M.; YACINE, H.; REGENSTEIN, J.; ZHOU, P. 2017. Effect of partial acidification on the ultrafiltration and diafiltration of skim milk: Physico-chemical properties of the resulting milk protein concentrates. J. Food Engineering. 212:55-64.
https://doi.org/10.1016/j.jfoodeng.2017.05.019
LOURENS-HATTINGH, A.; VILJOEN, B. 2001. Yogurt as probiotic carrier food. Internal Dairy J. 11(1-2):1-17.
https://doi.org/10.1016/S0958-6946(01)00036-X
LU, Y.; MCMAHON, D.; VOLLMER, A. 2017. Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J. Dairy Science. 100(2):892-900.
https://doi.org/10.3168/jds.2016-11648
MAO, X.; TONG, P.; GUALCO, S.; VINK, S. 2012. Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder. J. Dairy Science. 95(7):3481-3488.
https://doi.org/10.3168/jds.2011-4691
MARLE, M.; VAN DEN ENDE, D.; DE KRIUF, C.; MELLEMA, J. 1999. Steady-shear viscosity of stirred yogurts with varying ropiness. J. Rheology. 43:1643-1662.
https://doi.org/10.1122/1.551065
MAUBOIS, J.; MOCQUOT, G.; VASSAL, L. 1969. Procédé de traitement du lait et de sous produits laitiers. Paris, France. Patent 2052121.
MINISTERIO DE LA PROTECCIÓN SOCIAL. 2006. Ordinance 616. Bogotá, Colombia.
MISTRY, V.; MAUBOIS, J. 2004. Application of Membrane Separation Technology to Cheese Production. In: Cheese: Chemistry, Physics and Microbiology. El Sevier, Wisconsin, USA. p.261-262.
NAJGEBAUER-LEJKO, D.; ŻMUDZIŃSKI, D.; PTASZEK, A.; SOCHA, R. 2014. Textural properties of yogurts with green tea and Puerh tea additive. Internal J. Food Science and Technology. 49(4):1149-1158.
https://doi.org/10.1111/ijfs.12411
OZCAN, T.; HORNE, D.; LUCEY, J. 2011. Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt. J. Dairy Science. 94(11):5278-5288.
https://doi.org/10.3168/jds.2010-3932
PATEL, H.; PATEL, S. 2014. Milk protein concentrates: manufacturing and applications. Dairy Research Institute: Technical Report. p.2-3.
POULIOT, Y. 2008. Membrane processes in dairy technology—From a simple idea to worldwide panacea. Internal Dairy J. 18(7):735-740.
https://doi.org/10.1016/j.idairyj.2008.03.005
SANDOVAL-CASTILLA, O.; LOBATO-CALLEROS, C.; AGUIRRE-MANDUJANO, E.; VERNON-CARTER, E. 2004. Microstructure and texture of yogurt as influenced by fat replacers. Internal Dairy J. 14(2):151-159.
https://doi.org/10.1016/S0958-6946(03)00166-3
SANDRA, S.; CORREDING, M. 2013. Rennet induced gelation of reconstituted milk protein concentrates: The role of calcium and soluble proteins during reconstitution. Internal Dairy J. 29(2):68-74.
https://doi.org/10.1016/j.idairyj.2012.10.011
SCHULZ-COLLINS, D.; SENGE, B. 2004. Acid and Acid/Rennet-curd Cheeses Part A: Quark, Cream Cheese and Related Varieties. In: Fox, P.; McSweeney, P.; Cogan, T.; Guinee, T. Cheese: Chemistry, Physics and Microbiology. Elservier (Wisconsin, USA). p.303-304.
SERRA, M.; TRUJILLO, B.; GUAMIS, B.; FERRAGUT, V. 2009. Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high-pressure homogenization-treated milk. Food Hydrocolloids. 23(1):82-91.
https://doi.org/10.1016/j.foodhyd.2007.11.015
SINGH, H. 2007. Interactions of milk proteins during the manufacture of milk powders. Le Lait. 87(4-5):413-423.
SUPAVITITPATANA, P.; WIRJANTORO, T.; APICHARTSRANGKOON, A.; RAVIYAN, P. 2008. Addition of gelatin enhanced gelation of corn–milk yogurt. Food Chemistry. 106(1):211-216.
https://doi.org/10.1016/j.foodchem.2007.05.058
SVANBORG, S.; JOHANSEN, A.; ABRAHAMSEN, R.; SKEIE, S. 2015. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk. J. Dairy Science. 98(9):5829-5840.